Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Am Chem Soc ; 144(14): 6326-6342, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353516

RESUMO

Covalent protein kinase inhibitors exploit currently noncatalytic cysteines in the adenosine 5'-triphosphate (ATP)-binding site via electrophiles directly appended to a reversible-inhibitor scaffold. Here, we delineate a path to target solvent-exposed cysteines at a distance >10 Å from an ATP-site-directed core module and produce potent covalent phosphoinositide 3-kinase α (PI3Kα) inhibitors. First, reactive warheads are used to reach out to Cys862 on PI3Kα, and second, enones are replaced with druglike warheads while linkers are optimized. The systematic investigation of intrinsic warhead reactivity (kchem), rate of covalent bond formation and proximity (kinact and reaction space volume Vr), and integration of structure data, kinetic and structural modeling, led to the guided identification of high-quality, covalent chemical probes. A novel stochastic approach provided direct access to the calculation of overall reaction rates as a function of kchem, kinact, Ki, and Vr, which was validated with compounds with varied linker lengths. X-ray crystallography, protein mass spectrometry (MS), and NanoBRET assays confirmed covalent bond formation of the acrylamide warhead and Cys862. In rat liver microsomes, compounds 19 and 22 outperformed the rapidly metabolized CNX-1351, the only known PI3Kα irreversible inhibitor. Washout experiments in cancer cell lines with mutated, constitutively activated PI3Kα showed a long-lasting inhibition of PI3Kα. In SKOV3 cells, compounds 19 and 22 revealed PI3Kß-dependent signaling, which was sensitive to TGX221. Compounds 19 and 22 thus qualify as specific chemical probes to explore PI3Kα-selective signaling branches. The proposed approach is generally suited to develop covalent tools targeting distal, unexplored Cys residues in biologically active enzymes.


Assuntos
Cisteína , Fosfatidilinositol 3-Quinase , Trifosfato de Adenosina , Animais , Cisteína/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Ratos
2.
RSC Med Chem ; 12(4): 579-583, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34041490

RESUMO

Highly selective mTOR inhibitors have been discovered through the exploration of the heteroaromatic ring engaging the binding affinity region in mTOR kinase. Compound 11 showed predicted BBB permeability in a MDCK-MDR1 permeability in vitro assay, being the first pyrimido-pyrrolo-oxazine with potential application in the treatment of neurological disorders.

3.
J Med Chem ; 63(22): 13595-13617, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166139

RESUMO

The mechanistic target of rapamycin (mTOR) pathway is hyperactivated in cancer and neurological disorders. Rapalogs and mTOR kinase inhibitors (TORKi) have recently been applied to alleviate epileptic seizures in tuberous sclerosis complex (TSC). Herein, we describe a pharmacophore exploration to identify a highly potent, selective, brain penetrant TORKi. An extensive investigation of the morpholine ring engaging the mTOR solvent exposed region led to the discovery of PQR626 (8). 8 displayed excellent brain penetration and was well-tolerated in mice. In mice with a conditionally inactivated Tsc1 gene in glia, 8 significantly reduced the loss of Tsc1-induced mortality at 50 mg/kg p.o. twice a day. 8 overcomes the metabolic liabilities of PQR620 (52), the first-in-class brain penetrant TORKi showing efficacy in a TSC mouse model. The improved stability in human hepatocytes, excellent brain penetration, and efficacy in Tsc1GFAPCKO mice qualify 8 as a potential therapeutic candidate for the treatment of neurological disorders.


Assuntos
Encéfalo/metabolismo , Morfolinas/administração & dosagem , Morfolinas/metabolismo , Doenças do Sistema Nervoso/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Cães , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Morfolinas/química , Doenças do Sistema Nervoso/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
4.
ACS Med Chem Lett ; 10(10): 1473-1479, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620236

RESUMO

The phosphoinositide 3-kinase (PI3K)/mechanistic target of rapamycin (mTOR) pathway is a critical regulator of cell growth and is frequently hyperactivated in cancer. Therefore, PI3K inhibitors represent a valuable asset in cancer therapy. Herein we have developed a novel anticancer agent, the potent pan-PI3K inhibitor PQR514 (4), which is a follow-up compound for the phase-II clinical compound PQR309 (1). Compound 4 has an improved potency both in vitro and in cellular assays with respect to its predecessor compounds. It shows superiority in the suppression of cancer cell proliferation and demonstrates significant antitumor activity in an OVCAR-3 xenograft model at concentrations approximately eight times lower than PQR309 (1). The favorable pharmacokinetic profile and a minimal brain penetration promote PQR514 (4) as an optimized candidate for the treatment of systemic tumors.

6.
J Med Chem ; 62(13): 6241-6261, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31244112

RESUMO

The phosphoinositide 3-kinase (PI3K)/mechanistic target of rapamycin (mTOR) pathway is frequently overactivated in cancer, and drives cell growth, proliferation, survival, and metastasis. Here, we report a structure-activity relationship study, which led to the discovery of a drug-like adenosine 5'-triphosphate-site PI3K/mTOR kinase inhibitor: (S)-4-(difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine (PQR530, compound 6), which qualifies as a clinical candidate due to its potency and specificity for PI3K and mTOR kinases, and its pharmacokinetic properties, including brain penetration. Compound 6 showed excellent selectivity over a wide panel of kinases and an excellent selectivity against unrelated receptor enzymes and ion channels. Moreover, compound 6 prevented cell growth in a cancer cell line panel. The preclinical in vivo characterization of compound 6 in an OVCAR-3 xenograft model demonstrated good oral bioavailability, excellent brain penetration, and efficacy. Initial toxicity studies in rats and dogs qualify 6 for further development as a therapeutic agent in oncology.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Piridinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Triazinas/farmacologia , Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Cães , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Morfolinas/síntese química , Morfolinas/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Inibidores de Fosfoinositídeo-3 Quinase/metabolismo , Ligação Proteica , Piridinas/síntese química , Piridinas/metabolismo , Ratos Wistar , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Triazinas/síntese química , Triazinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Clin Cancer Res ; 23(22): 7047-7058, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912136

RESUMO

Purpose: Despite tumor resection being the first-line clinical care for glioblastoma (GBM) patients, nearly all preclinical immune therapy models intend to treat established GBM. Characterizing cytoreductive surgery-induced immune response combined with the administration of immune cytokines has the potential of offering a new treatment paradigm of immune therapy for GBMs.Experimental Design: We developed syngeneic orthotopic mouse GBM models of tumor resection and characterized the immune response of intact and resected tumors. We also created a highly secretable variant of immune cytokine IFNß to enhance its release from engineered mouse mesenchymal stem cells (MSC-IFNß) and assessed whether surgical resection of intracranial GBM tumor significantly enhanced the antitumor efficacy of targeted on-site delivery of encapsulated MSC-IFNß.Results: We show that tumor debulking results in substantial reduction of myeloid-derived suppressor cells (MDSC) and simultaneous recruitment of CD4/CD8 T cells. This immune response significantly enhanced the antitumor efficacy of locally delivered encapsulated MSC-IFNß via enhanced selective postsurgical infiltration of CD8 T cells and directly induced cell-cycle arrest in tumor cells, resulting in increased survival of mice. Utilizing encapsulated human MSC-IFNß in resected orthotopic tumor xenografts of patient-derived GBM, we further show that IFNß induces cell-cycle arrest followed by apoptosis, resulting in increased survival in immunocompromised mice despite their absence of an intact immune system.Conclusions: This study demonstrates the importance of syngeneic tumor resection models in developing cancer immunotherapies and emphasizes the translational potential of local delivery of immunotherapeutic agents in treating cancer. Clin Cancer Res; 23(22); 7047-58. ©2017 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/imunologia , Interferon beta/genética , Células-Tronco/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Quimiotaxia de Leucócito/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Interferon beta/metabolismo , Camundongos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biomater Sci ; 4(9): 1291-309, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27480033

RESUMO

Nanotechnology-based gene delivery is the division of nanomedicine concerned with the synthesis, characterization, and functionalization of nanomaterials to be used in targeted-gene delivery applications. Nanomaterial-based gene delivery systems hold great promise for curing fatal inherited and acquired diseases, including neurological disorders, cancer, cardiovascular diseases, and acquired immunodeficiency syndrome (AIDS). However, their use in clinical applications is still controversial. To date, the Food and Drug Administration (FDA) has not approved any gene delivery system because of the unknown long-term toxicity and the low gene transfection efficiency of nanomaterials in vivo. Compared to viral vectors, nonviral gene delivery vectors are characterized by a low preexisting immunogenicity, which is important for preventing a severe immune response. In addition, nonviral vectors provide higher loading capacity and ease of fabrication. For these reasons, this review article focuses on applications of nonviral gene delivery systems, including those based on lipids, polymers, graphene, and other inorganic nanoparticles, and discusses recent advances in nanomaterials for gene therapy. Methods of synthesizing these nanomaterials are briefly described from a materials science perspective. Also, challenges, critical issues, and concerns about the in vivo applications of nanomaterial-based gene delivery systems are discussed. It should be noted that this article is not a comprehensive review of the literature.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Terapia Genética/tendências , Vetores Genéticos , Humanos , Nanomedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA