Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(7): e3002203, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486940

RESUMO

The physiology and behavior of social organisms correlate with their social environments. However, because social environments are typically confounded by age and physical environments (i.e., spatial location and associated abiotic factors), these correlations are usually difficult to interpret. For example, associations between an individual's social environment and its gene expression patterns may result from both factors being driven by age or behavior. Simultaneous measurement of pertinent variables and quantification of the correlations between these variables can indicate whether relationships are direct (and possibly causal) or indirect. Here, we combine demographic and automated behavioral tracking with a multiomic approach to dissect the correlation structure among the social and physical environment, age, behavior, brain gene expression, and microbiota composition in the carpenter ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated with the social environment. Moreover, seemingly strong correlations between brain gene expression and microbiota composition, physical environment, age, and behavior became weak when controlling for the social environment. Consistent with this, a machine learning analysis revealed that from brain gene expression data, an individual's social environment can be more accurately predicted than any other behavioral metric. These results indicate that social environment is a key regulator of behavior and physiology.


Assuntos
Formigas , Microbiota , Animais , Formigas/genética , Comportamento Social , Microbiota/genética , Encéfalo , Expressão Gênica/genética , Rede Social
2.
Annu Rev Genet ; 51: 219-239, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28853926

RESUMO

The study of insect social behavior has offered tremendous insight into the molecular mechanisms mediating behavioral and phenotypic plasticity. Genomic applications to the study of eusocial insect species, in particular, have led to several hypotheses for the processes underlying the molecular evolution of behavior. Advances in understanding the genetic control of social organization have also been made, suggesting an important role for supergenes in the evolution of divergent behavioral phenotypes. Intensive study of social phenotypes across species has revealed that behavior and caste are controlled by an interaction between genetic and environmentally mediated effects and, further, that gene expression and regulation mediate plastic responses to environmental signals. However, several key methodological flaws that are hindering progress in the study of insect social behavior remain. After reviewing the current state of knowledge, we outline ongoing challenges in experimental design that remain to be overcome in order to advance the field.


Assuntos
Comportamento Animal , Genes de Insetos , Genoma de Inseto , Insetos/genética , Comportamento Social , Animais , Evolução Biológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interação Gene-Ambiente , Fenótipo
3.
Proc Natl Acad Sci U S A ; 119(34): e2201040119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969752

RESUMO

Supergenes are clusters of tightly linked genes that jointly produce complex phenotypes. Although widespread in nature, how such genomic elements are formed and how they spread are in most cases unclear. In the fire ant Solenopsis invicta and closely related species, a "social supergene controls whether a colony maintains one or multiple queens. Here, we show that the three inversions constituting the Social b (Sb) supergene emerged sequentially during the separation of the ancestral lineages of S. invicta and Solenopsis richteri. The two first inversions arose in the ancestral population of both species, while the third one arose in the S. richteri lineage. Once completely assembled in the S. richteri lineage, the supergene first introgressed into S. invicta, and from there into the other species of the socially polymorphic group of South American fire ant species. Surprisingly, the introgression of this large and important genomic element occurred despite recent hybridization being uncommon between several of the species. These results highlight how supergenes can readily move across species boundaries, possibly because of fitness benefits they provide and/or expression of selfish properties favoring their transmission.


Assuntos
Formigas , Animais , Formigas/genética , Hibridização Genética , Fenótipo
4.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703226

RESUMO

Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Ligação a DNA/genética , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fertilidade/genética , Estudo de Associação Genômica Ampla , Longevidade/genética , Nucleotídeos/metabolismo , Polimorfismo de Nucleotídeo Único , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo
5.
New Phytol ; 242(3): 870-877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403933

RESUMO

Greenbeards are selfish genetic elements that make their bearers behave either altruistically towards individuals bearing similar greenbeard copies or harmfully towards individuals bearing different copies. They were first proposed by W. D. Hamilton over 50 yr ago, to illustrate that kin selection may operate at the level of single genes. Examples of greenbeards have now been reported in a wide range of taxa, but they remain undocumented in plants. In this paper, we discuss the theoretical likelihood of greenbeard existence in plants. We then question why the greenbeard concept has never been applied to plants and speculate on how hypothetical greenbeards could affect plant-plant interactions. Finally, we point to different research directions to improve our knowledge of greenbeards in plants.

6.
PLoS Comput Biol ; 19(3): e1010487, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972310

RESUMO

Displaced communication, whereby individuals communicate regarding a subject that is not immediately present (spatially or temporally), is one of the key features of human language. It also occurs in a few animal species, most notably the honeybee, where the waggle dance is used to communicate the location and quality of a patch of flowers. However, it is difficult to study how it emerged given the paucity of species displaying this capacity and the fact that it often occurs via complex multimodal signals. To address this issue, we developed a novel paradigm in which we conducted experimental evolution with foraging agents endowed with neural networks that regulate their movement and the production of signals. Displaced communication readily evolved but, surprisingly, agents did not use signal amplitude to convey information on food location. Instead, they used signal onset-delay and duration-based mode of communication, which depends on the motion of the agent within a communication area. When agents were experimentally prevented from using these modes of communication, they evolved to use signal amplitude instead. Interestingly, this mode of communication was more efficient and led to higher performance. Subsequent controlled experiments suggested that this more efficient mode of communication failed to evolve because it took more generations to emerge than communication grounded on the onset-delay and length of signaling. These results reveal that displaced communication is likely to initially evolve from non-communicative behavioral cues providing incidental information with evolution later leading to more efficient communication systems through a ritualization process.


Assuntos
Comunicação Animal , Sinais (Psicologia) , Animais , Abelhas , Humanos , Comportamento Alimentar/fisiologia , Movimento , Comunicação
7.
Mol Ecol ; 32(5): 1087-1097, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541826

RESUMO

Indirect genetic effects describe phenotypic variation that results from differences in the genotypic composition of social partners. Such effects represent heritable sources of environmental variation in eusocial organisms because individuals are typically reared by their siblings. In the fire ant Solenopsis invicta, a social supergene exhibits striking indirect genetic effects on worker regulation of colony queen number, such that the genotypic composition of workers at the supergene determines whether colonies contain a single or multiple queens. We assessed the direct and indirect genetic effects of this supergene on gene expression in brains and abdominal tissues from laboratory-reared workers and compared these with previously published data from field-collected prereproductive queens. We found that direct genetic effects caused larger gene expression changes and were more consistent across tissue types and castes than indirect genetic effects. Indirect genetic effects influenced the expression of many loci but were generally restricted to the abdominal tissues. Further, indirect genetic effects were only detected when the genotypic composition of social partners differed throughout the development and adult life of focal workers, and were often only significant with relatively lenient statistical cutoffs. Our study provides insight into direct and indirect genetic effects of a social supergene on gene regulatory dynamics across tissues and castes in a complex society.


Assuntos
Formigas , Comportamento Social , Humanos , Animais , Genótipo , Regulação da Expressão Gênica , Formigas/genética
8.
Mol Ecol ; 32(5): 1020-1033, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527320

RESUMO

Clonal reproduction can provide an advantage for invasive species to establish as it can circumvent inbreeding depression which often plagues introduced populations. The world's most widespread invasive ant, Paratrechina longicornis, was previously found to display a double-clonal reproduction system, whereby both males and queens are produced clonally, resulting in separate male and queen lineages, while workers are produced sexually. Under this unusual reproduction mode, inbreeding is avoided in workers as they carry hybrid interlineage genomes. Despite the ubiquitous distribution of P. longicornis, the significance of this reproductive system for the ant's remarkable success remains unclear, as its prevalence is still unknown. Further investigation into the controversial native origin of P. longicornis is also required to reconstruct the evolutionary histories of double-clonal lineages. Here, we examine genetic variation and characterize the reproduction mode of P. longicornis populations sampled worldwide using microsatellites and mitochondrial DNA sequences to infer the ant's putative native range and the distribution of the double-clonal reproductive system. Analyses of global genetic variations indicate that the Indian subcontinent is a genetic diversity hotspot of this species, suggesting that P. longicornis probably originates from this geographical area. Our analyses revealed that both the inferred native and introduced populations exhibit double-clonal reproduction, with queens and males around the globe belonging to two separate, nonrecombining clonal lineages. By contrast, workers are highly heterozygous because they are first-generation interlineage hybrids. Overall, these data indicate a worldwide prevalence of double clonality in P. longicornis and support the prediction that the unusual genetic system may have pre-adapted this ant for global colonization by maintaining heterozygosity in the worker force and alleviating genetic bottlenecks.


Assuntos
Formigas , Animais , Masculino , Genótipo , Formigas/genética , Evolução Biológica , Heterozigoto , Reprodução/genética
9.
Proc Natl Acad Sci U S A ; 117(46): 28894-28898, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139540

RESUMO

The genetic evolution of altruism (i.e., a behavior resulting in a net reduction of the survival and/or reproduction of an actor to benefit a recipient) once perplexed biologists because it seemed paradoxical in a Darwinian world. More than half a century ago, W. D. Hamilton explained that when interacting individuals are genetically related, alleles for altruism can be favored by selection because they are carried by individuals more likely to interact with other individuals carrying the alleles for altruism than random individuals in the population ("kin selection"). In recent decades, a substantial number of supposedly alternative pathways to altruism have been published, leading to controversies surrounding explanations for the evolution of altruism. Here, we systematically review the 200 most impactful papers published on the evolution of altruism and identify 43 evolutionary models in which altruism evolves and where the authors attribute the evolution of altruism to a pathway other than kin selection and/or deny the role of relatedness. An analysis of these models reveals that in every case the life cycle assumptions entail local reproduction and local interactions, thereby leading to interacting individuals being genetically related. Thus, contrary to the authors' claims, Hamilton's relatedness drives the evolution to altruism in their models. The fact that several decades of investigating the evolution to altruism have resulted in the systematic and unwitting rediscovery of the same mechanism is testament to the fundamental importance of positive relatedness between actor and recipient for explaining the evolution of altruism.


Assuntos
Altruísmo , Evolução Biológica , Comportamento Cooperativo , Animais , Humanos , Modelos Genéticos , Seleção Genética/genética
10.
Proc Biol Sci ; 289(1986): 20221989, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350205

RESUMO

'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.


Assuntos
Proteínas de Drosophila , Prunus armeniaca , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Alelos , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Longevidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
11.
Mol Ecol ; 31(21): 5602-5607, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070191

RESUMO

Genes not only control traits of their carrier organism (known as direct genetic effects or DGEs) but also shape their carrier's physical environment and the phenotypes of their carrier's social partners (known as indirect genetic effects or IGEs). Theoretical research has shown that the effects that genes exert on social partners can have profound consequences, potentially altering heritability and the direction of trait evolution. Complementary empirical research has shown that in various contexts (particularly in animal agriculture) IGEs can explain a large proportion of variation in specific traits. However, little is known about the general prevalence of IGEs. We conducted a reciprocal cross-fostering experiment with two genetic lineages of the clonal raider ant Ooceraea biroi to quantify the relative contribution of DGEs and IGEs to variation in brain gene expression (which underlies behavioural variation). We found that thousands of genes are differentially expressed by DGEs but not a single gene is differentially expressed by IGEs. This is surprising given the highly social context of ant colonies and given that individual behaviour varies according to the genotypic composition of the social environment in O. biroi. Overall, these findings indicate that we have a lot to learn about how the magnitude of IGEs varies across species and contexts.


Assuntos
Formigas , Animais , Formigas/genética , Fenótipo , Encéfalo , Meio Social , Expressão Gênica/genética , Comportamento Social
12.
J Chem Ecol ; 48(2): 109-120, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850312

RESUMO

Ants use chemical signals to communicate for various purposes related to colony function. Social organization in the red imported fire ant, Solenopsis invicta, is determined by the Sb supergene, with colonies of the monogyne (single-queen) form lacking the element and colonies of the polygyne (multiple-queen) form possessing it. Polygyne workers accept new reproductive queens in their nest, but only those carrying Sb; young winged queens lacking this genetic element are executed as they mature sexually in their natal nest or as they attempt to enter a foreign nest to initiate reproduction after mating and shedding their wings. It has been suggested that queen supergene genotype status is signaled to workers by unsaturated cuticular hydrocarbons, while queen reproductive status is signaled by piperidines (venom alkaloids). We used high-throughput behavioral assays to study worker acceptance of paper dummies dosed with fractions of extracts of polygyne queens, or blends of synthetic counterparts of queen cuticular compounds. We show that the queen supergene pheromone comprises a blend of monoene and diene unsaturated hydrocarbons. Our assays also reveal that unsaturated hydrocarbons elicit discrimination by polygyne workers only when associated with additional compounds that signal queen fertility. This synergistic effect was obtained with a polar fraction of queen extracts, but not by the piperidine alkaloids, suggesting that the chemical(s) indicating queen reproductive status are compounds more polar than cuticular hydrocarbons but are not the piperidine alkaloids. Our results advance understanding of the role of chemical signaling that is central to the regulation of social organization in an important invasive pest and model ant species.


Assuntos
Formigas , Animais , Formigas/fisiologia , Genótipo , Humanos , Feromônios , Reprodução , Comportamento Social
13.
Proc Natl Acad Sci U S A ; 116(12): 5597-5606, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842287

RESUMO

Oxytocin/vasopressin-like peptides are important regulators of physiology and social behavior in vertebrates. However, the function of inotocin, the homologous peptide in arthropods, remains largely unknown. Here, we show that the level of expression of inotocin and inotocin receptor are correlated with task allocation in the ant Camponotus fellah Both genes are up-regulated when workers age and switch tasks from nursing to foraging. in situ hybridization revealed that inotocin receptor is specifically expressed in oenocytes, which are specialized cells synthesizing cuticular hydrocarbons which function as desiccation barriers in insects and for social recognition in ants. dsRNA injection targeting inotocin receptor, together with pharmacological treatments using three identified antagonists blocking inotocin signaling, revealed that inotocin signaling regulates the expression of cytochrome P450 4G1 (CYP4G1) and the synthesis of cuticular hydrocarbons, which play an important role in desiccation resistance once workers initiate foraging.


Assuntos
Escamas de Animais/metabolismo , Formigas/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Escamas de Animais/crescimento & desenvolvimento , Animais , Hidrocarbonetos , Insetos/metabolismo , Ocitocina/análogos & derivados , Ocitocina/metabolismo , Comportamento Social , Vasopressinas/análise , Vasopressinas/metabolismo , Água/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(17): 8437-8444, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962372

RESUMO

In many animals, females respond to mating with changes in physiology and behavior that are triggered by molecules transferred by males during mating. In Drosophila melanogaster, proteins in the seminal fluid are responsible for important female postmating responses, including temporal changes in egg production, elevated feeding rates and activity levels, reduced sexual receptivity, and activation of the immune system. It is unclear to what extent these changes are mutually beneficial to females and males or instead represent male manipulation. Here we use an experimental evolution approach in which females are randomly paired with a single male each generation, eliminating any opportunity for competition for mates or mate choice and thereby aligning the evolutionary interests of the sexes. After >150 generations of evolution, males from monogamous populations elicited a weaker postmating stimulation of egg production and activity than males from control populations that evolved with a polygamous mating system. Males from monogamous populations did not differ from males from polygamous populations in their ability to induce refractoriness to remating in females, but they were inferior to polygamous males in sperm competition. Mating-responsive genes in both the female abdomen and head showed a dampened response to mating with males from monogamous populations. Males from monogamous populations also exhibited lower expression of genes encoding seminal fluid proteins, which mediate the female response to mating. Together, these results demonstrate that the female postmating response, and the male molecules involved in eliciting this response, are shaped by ongoing sexual conflict.


Assuntos
Drosophila melanogaster , Comportamento Sexual Animal/fisiologia , Animais , Evolução Biológica , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Masculino , Proteínas de Plasma Seminal/análise , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo , Transcriptoma/genética , Transcriptoma/fisiologia
15.
PLoS Genet ; 15(2): e1007905, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735500

RESUMO

RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues.


Assuntos
RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Regulação da Expressão Gênica/genética , Células Germinativas/fisiologia , Gônadas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , MicroRNAs/genética , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Caracteres Sexuais
16.
Proc Biol Sci ; 288(1950): 20210275, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33947238

RESUMO

Stable social groups usually consist of families. However, recent studies have revealed higher level social structure, with interactions between family groups across different levels of social organization in multiple species. The explanations for why this apparently paradoxical behaviour arises appear to be varied and remain untested. Here, we use automated radio-tagging data from over 1000 wasps from 93 nests and social network analyses of over 30 000 nest visitation records to describe and explain interactions across levels of social organization in the eusocial paper wasp Polistes canadensis. We detected three levels of social organization (nest, aggregation and community) which exchange 'drifter' individuals within and between levels. The highest level (community) may be influenced by the patchiness of high-quality nesting habitats in which these insects exist. Networks of drifter movements were explained by the distance between nests, the group size of donor nests and the worker-to-brood ratios on donor and recipient nests. These findings provide some explanation for the multi-level social interactions, which may otherwise seem paradoxical. Fitness benefits across multiple levels of social organization should be considered when trying to understand animal societies.


Assuntos
Comportamento de Nidação , Vespas , Animais , Ecossistema , Comportamento Social , Interação Social
17.
Proc Natl Acad Sci U S A ; 115(21): 5486-5491, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735696

RESUMO

Biological invasions are a major threat to biological diversity, agriculture, and human health. To predict and prevent new invasions, it is crucial to develop a better understanding of the drivers of the invasion process. The analysis of 4,533 border interception events revealed that at least 51 different alien ant species were intercepted at US ports over a period of 70 years (1914-1984), and 45 alien species were intercepted entering New Zealand over a period of 68 years (1955-2013). Most of the interceptions did not originate from species' native ranges but instead came from invaded areas. In the United States, 75.7% of the interceptions came from a country where the intercepted ant species had been previously introduced. In New Zealand, this value was even higher, at 87.8%. There was an overrepresentation of interceptions from nearby locations (Latin America for species intercepted in the United States and Oceania for species intercepted in New Zealand). The probability of a species' successful establishment in both the United States and New Zealand was positively related to the number of interceptions of the species in these countries. Moreover, species that have spread to more continents are also more likely to be intercepted and to make secondary introductions. This creates a positive feedback loop between the introduction and establishment stages of the invasion process, in which initial establishments promote secondary introductions. Overall, these results reveal that secondary introductions act as a critical driver of increasing global rates of invasions.


Assuntos
Formigas/fisiologia , Biodiversidade , Ecossistema , Espécies Introduzidas , Animais , Nova Zelândia , Estados Unidos
18.
Artif Life ; 26(2): 274-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271631

RESUMO

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.


Assuntos
Algoritmos , Biologia Computacional , Criatividade , Vida , Evolução Biológica
19.
Nature ; 493(7434): 664-8, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23334415

RESUMO

Intraspecific variability in social organization is common, yet the underlying causes are rarely known. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene. Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13 megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.


Assuntos
Formigas/genética , Comportamento Animal , Comportamento Social , Animais , Cromossomos/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma de Inseto/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Polimorfismo Genético , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA