Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 67(10): 8077-8098, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727100

RESUMO

Migration of immune cells to sites of inflammation is a critical step in the body's response to infections but also during autoimmune flares. Chemokine receptors, members of the GPCR receptors, are instrumental in directing specific cell types to their target organs. Herein, we describe a highly potent small molecule antagonist of the chemokine receptor CCR6, which came out of fine-tuned structural elaborations from a proprietary HTS hit. Three main issues in the parent chemical series-cytotoxicity, phototoxicity, and hERG, were successfully solved. Biological characterization demonstrated that compound 45 (IDOR-1117-2520) is a selective and insurmountable antagonist of CCR6. In vivo proof-of-mechanism studies in a mouse lung inflammation model using a representative compound from the chemical class of 45 confirmed that the targeted CCR6+ cells were efficiently inhibited from migrating into the bronchoalveoli. Finally, ADMET and physicochemical properties were well balanced and the preclinical package warranted progress in the clinic.


Assuntos
Doenças Autoimunes , Receptores CCR6 , Receptores CCR6/antagonistas & inibidores , Receptores CCR6/metabolismo , Animais , Humanos , Doenças Autoimunes/tratamento farmacológico , Camundongos , Relação Estrutura-Atividade , Descoberta de Drogas
2.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837943

RESUMO

Genomic information is increasingly used to inform medical treatments and manage future disease risks. However, any personal and societal gains must be carefully balanced against the risk to individuals contributing their genomic data. Expanding our understanding of actionable genomic insights requires researchers to access large global datasets to capture the complexity of genomic contribution to diseases. Similarly, clinicians need efficient access to a patient's genome as well as population-representative historical records for evidence-based decisions. Both researchers and clinicians hence rely on participants to consent to the use of their genomic data, which in turn requires trust in the professional and ethical handling of this information. Here, we review existing and emerging solutions for secure and effective genomic information management, including storage, encryption, consent, and authorization that are needed to build participant trust. We discuss recent innovations in cloud computing, quantum-computing-proof encryption, and self-sovereign identity. These innovations can augment key developments from within the genomics community, notably GA4GH Passports and the Crypt4GH file container standard. We also explore how decentralized storage as well as the digital consenting process can offer culturally acceptable processes to encourage data contributions from ethnic minorities. We conclude that the individual and their right for self-determination needs to be put at the center of any genomics framework, because only on an individual level can the received benefits be accurately balanced against the risk of exposing private information.


Assuntos
Genômica , Humanos , Genômica/métodos , Genômica/ética , Segurança Computacional , Computação em Nuvem , Consentimento Livre e Esclarecido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA