Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 14(4): 7142-55, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24759114

RESUMO

Turbidity is an internationally recognized criterion for assessing drinking water quality, because the colloidal particles in turbid water may harbor pathogens, chemically reduce oxidizing disinfectants, and hinder attempts to disinfect water with ultraviolet radiation. A turbidimeter is an electronic/optical instrument that assesses turbidity by measuring the scattering of light passing through a water sample containing such colloidal particles. Commercial turbidimeters cost hundreds or thousands of dollars, putting them beyond the reach of low-resource communities around the world. An affordable open-source turbidimeter based on a single light-to-frequency sensor was designed and constructed, and evaluated against a portable commercial turbidimeter. The final product, which builds on extensive published research, is intended to catalyze further developments in affordable water and sanitation monitoring.


Assuntos
Nefelometria e Turbidimetria/economia , Nefelometria e Turbidimetria/instrumentação , Calibragem , Desenho de Equipamento , Padrões de Referência
2.
J Acoust Soc Am ; 114(5): 2757-66, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14650010

RESUMO

The target strengths and swimbladder morphology of six snapper species were investigated using broadband sonar, x rays, and swimbladder casts. Backscatter data were obtained using a frequency-modulated sweep (60-200 kHz) and a broadband, dolphinlike click (peak frequency 120 kHz) from live fish, mounted and rotated around each of their three axes. X rays revealed species-specific differences in the shape, size, and orientation of the swimbladders. The angle between the fish's dorsal aspect and the major axis of its swimbladder ranged from 3 degrees to 12 degrees and was consistent between individuals within a species. This angle had a one-to-one relationship with the angle at which the maximum dorsal aspect target strength was measured (r2 = 0.93), regardless of species. Maximum dorsal aspect target strength was correlated with length within species. However, the swimbladder modeled as an air-filled prolate spheroid with axes measured from the x rays of the swimbladder predicted maximum target strength significantly better than models based on fish length or swimbladder volume. For both the dorsal and lateral aspects, the prolate spheroid model's predictions were not significantly different from the measured target strengths (observed power >0.75) and were within 3 dB of the measured values. This model predicts the target strengths of all species equally well, unlike those based on length.


Assuntos
Acústica , Sacos Aéreos/fisiologia , Peixes/fisiologia , Modelos Biológicos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA