Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microb Ecol ; 86(2): 1374-1392, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36344828

RESUMO

The fungus gardening-ant system is considered a complex, multi-tiered symbiosis, as it is composed of ants, their fungus, and microorganisms associated with either ants or fungus. We examine the bacterial microbiome of Trachymyrmex septentrionalis and Mycetomoellerius turrifex ants and their symbiotic fungus gardens, using 16S rRNA Illumina sequencing, over a region spanning approximately 350 km (east and central Texas). Typically, microorganisms can be acquired from a parent colony (vertical transmission) or from the environment (horizontal transmission). Because the symbiosis is characterized by co-dispersal of the ants and fungus, elements of both ant and fungus garden microbiome could be characterized by vertical transmission. The goals of this study were to explore how both the ant and fungus garden bacterial microbiome are acquired. The main findings were that different mechanisms appear to explain the structure the microbiomes of ants and their symbiotic fungus gardens. Ant associated microbiomes had a strong host ant signature, which could be indicative of vertical inheritance of the ant associated bacterial microbiome or an unknown mechanism of active uptake or screening. On the other hand, the bacterial microbiome of the fungus garden was more complex in that some bacterial taxa appear to be structured by the ant host species, whereas others by fungal lineage or the environment (geographic region). Thus bacteria in fungus gardens appear to be acquired both horizontally and vertically.


Assuntos
Formigas , Microbiota , Animais , Jardins , Jardinagem , Formigas/microbiologia , Fungos/genética , Simbiose/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Filogenia
2.
Mol Ecol ; 30(21): 5605-5620, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34424571

RESUMO

Over the past few decades, large-scale phylogenetic analyses of fungus-gardening ants and their symbiotic fungi have depicted strong concordance among major clades of ants and their symbiotic fungi, yet within clades, fungus sharing is widespread among unrelated ant lineages. Sharing has been explained using a diffuse coevolution model within major clades. Understanding horizontal exchange within clades has been limited by conventional genetic markers that lack both interspecific and geographic variation. To examine whether reports of horizontal exchange were indeed due to symbiont sharing or the result of employing relatively uninformative molecular markers, samples of Trachymyrmex arizonensis and Trachymyrmex pomonae and their fungi were collected from native populations in Arizona and genotyped using conventional marker genes and genome-wide single nucleotide polymorphisms (SNPs). Conventional markers of the fungal symbionts generally exhibited cophylogenetic patterns that were consistent with some symbiont sharing, but most fungal clades had low support. SNP analysis, in contrast, indicated that each ant species exhibited fidelity to its own fungal subclade with only one instance of a colony growing a fungus that was otherwise associated with a different ant species. This evidence supports a pattern of codivergence between Trachymyrmex species and their fungi, and thus a diffuse coevolutionary model may not accurately predict symbiont exchange. These results suggest that fungal sharing across host species in these symbioses may be less extensive than previously thought.


Assuntos
Formigas , Animais , Formigas/genética , Fungos , Genótipo , Filogenia , Simbiose/genética
3.
Mol Ecol ; 28(11): 2831-2845, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31141257

RESUMO

To explore landscape genomics at the range limit of an obligate mutualism, we use genotyping-by-sequencing (ddRADseq) to quantify population structure and the effect of host-symbiont interactions between the northernmost fungus-farming leafcutter ant Atta texana and its two main types of cultivated fungus. Genome-wide differentiation between ants associated with either of the two fungal types is of the same order of magnitude as differentiation associated with temperature and precipitation across the ant's entire range, suggesting that specific ant-fungus genome-genome combinations may have been favoured by selection. For the ant hosts, we found a broad cline of genetic structure across the range, and a reduction of genetic diversity along the axis of range expansion towards the range margin. This population-genetic structure was concordant between the ants and one cultivar type (M-fungi, concordant clines) but discordant for the other cultivar type (T-fungi). Discordance in population-genetic structures between ant hosts and a fungal symbiont is surprising because the ant farmers codisperse with their vertically transmitted fungal symbionts. Discordance implies that (a) the fungi disperse also through between-nest horizontal transfer or other unknown mechanisms, and (b) genetic drift and gene flow can differ in magnitude between each partner and between different ant-fungus combinations. Together, these findings imply that variation in the strength of drift and gene flow experienced by each mutualistic partner affects adaptation to environmental stress at the range margin, and genome-genome interactions between host and symbiont influence adaptive genetic differentiation of the host during range evolution in this obligate mutualism.


Assuntos
Formigas/genética , Formigas/microbiologia , Fungos/genética , Genômica , Simbiose , Animais , Variação Genética , Genótipo , Análise de Componente Principal
4.
J Insect Sci ; 19(6)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31854452

RESUMO

Ants are among the most successful insects in Earth's evolutionary history. However, there is a lack of knowledge regarding range-limiting factors that may influence their distribution. The goal of this study was to describe the environmental factors (climate and soil types) that likely impact the ranges of five out of the eight most abundant Trachymyrmex species and the most abundant Mycetomoellerius species in the United States. Important environmental factors may allow us to better understand each species' evolutionary history. We generated habitat suitability maps using MaxEnt for each species and identified associated most important environmental variables. We quantified niche overlap between species and evaluated possible congruence in species distribution. In all but one model, climate variables were more important than soil variables. The distribution of M. turrifex (Wheeler, W.M., 1903) was predicted by temperature, specifically annual mean temperature (BIO1), T. arizonensis (Wheeler, W.M., 1907), T. carinatus, and T. smithi Buren, 1944 were predicted by precipitation seasonality (BIO15), T. septentrionalis (McCook, 1881) were predicted by precipitation of coldest quarter (BIO19), and T. desertorum (Wheeler, W.M., 1911) was predicted by annual flood frequency. Out of 15 possible pair-wise comparisons between each species' distributions, only one was statistically indistinguishable (T. desertorum vs T. septentrionalis). All other species distribution comparisons show significant differences between species. These models support the hypothesis that climate is a limiting factor in each species distribution and that these species have adapted to temperatures and water availability differently.


Assuntos
Distribuição Animal , Formigas , Agaricales , Animais , Ecossistema , Modelos Biológicos , Estados Unidos
5.
Microb Ecol ; 76(2): 530-543, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29285550

RESUMO

Group-living can promote the evolution of adaptive strategies to prevent and control disease. Fungus-gardening ants must cope with two sets of pathogens, those that afflict the ants themselves and those of their symbiotic fungal gardens. While much research has demonstrated the impact of specialized fungal pathogens that infect ant fungus gardens, most of these studies focused on the so-called higher attine ants, which are thought to coevolve diffusely with two clades of leucocoprinaceous fungi. Relatively few studies have addressed disease ecology of lower Attini, which are thought to occasionally recruit (domesticate) novel leucocoprinaceous fungi from free-living populations; coevolution between lower-attine ants and their fungi is therefore likely weaker (or even absent) than in the higher Attini, which generally have many derived modifications. Toward understanding the disease ecology of lower-attine ants, this study (a) describes the diversity in the microfungal genus Escovopsis that naturally infect fungus gardens of the lower-attine ant Mycocepurus smithii and (b) experimentally determines the relative contributions of Escovopsis strain (a possible garden disease), M. smithii ant genotype, and fungal cultivar lineage to disease susceptibility and colony fitness. In controlled in-vivo infection laboratory experiments, we demonstrate that the susceptibility to Escovopsis infection was an outcome of ant-cultivar-Escovopsis interaction, rather than solely due to ant genotype or fungal cultivar lineage. The role of complex ant-cultivar-Escovopsis interactions suggests that switching M. smithii farmers onto novel fungus types might be a strategy to generate novel ant-fungus combinations resistant to most, but perhaps not all, Escovopsis strains circulating in a local population of this and other lower-attine ants.


Assuntos
Formigas/microbiologia , Coevolução Biológica , Fungos/patogenicidade , Jardinagem , Interações Hospedeiro-Patógeno/fisiologia , Simbiose , Doenças dos Animais/microbiologia , Animais , Resistência à Doença/fisiologia , Ecologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Genótipo , Hypocreales/classificação , Hypocreales/genética , Hypocreales/isolamento & purificação , Hypocreales/patogenicidade
6.
Sci Rep ; 14(1): 3231, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332146

RESUMO

Advances in our understanding of symbiotic stability have demonstrated that microorganisms are key to understanding the homeostasis of obligate symbioses. Fungus-gardening ants are excellent model systems for exploring how microorganisms may be involved in symbiotic homeostasis as the host and symbionts are macroscopic and can be easily experimentally manipulated. Their coevolutionary history has been well-studied; examinations of which have depicted broad clade-to-clade specificity between the ants and fungus. Few studies hitherto have addressed the roles of microbiomes in stabilizing these associations. Here, we quantified changes in microbiome structure as a result of experimentally induced horizontal exchange of symbionts. This was done by performing cross-fostering experiments forcing ants to grow novel fungi and comparing known temporally unstable (undergoing dysbiosis) and stable combinations. We found that fungus-gardening ants alter their unstable, novel garden microbiomes into configurations like those found in native gardens. Patterns of dysbiosis/symbiosis appear to be predictable in that two related species with similar specificity patterns also show similar patterns of microbial change, whereas a species with more relaxed specificity does not show such microbiome change or restructuring when growing different fungi. It appears that clade-to-clade specificity patterns are the outcomes of community-level interactions that promote stability or cause symbiotic collapse.


Assuntos
Formigas , Microbiota , Animais , Jardinagem , Formigas/microbiologia , Simbiose , Disbiose , Fungos , Filogenia
7.
Appl Environ Microbiol ; 79(6): 1803-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291551

RESUMO

Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice.


Assuntos
Especificidade de Hospedeiro , Himenópteros/microbiologia , Lactobacillus/classificação , Lactobacillus/isolamento & purificação , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Lactobacillus/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Microb Ecol ; 61(4): 821-31, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21243351

RESUMO

Social insects harbor diverse assemblages of bacterial microbes, which may play a crucial role in the success or failure of biological invasions. The invasive fire ant Solenopsis invicta (Formicidae, Hymenoptera) is a model system for understanding the dynamics of invasive social insects and their biological control. However, little is known about microbes as biotic factors influencing the success or failure of ant invasions. This pilot study is the first attempt to characterize and compare microbial communities associated with the introduced S. invicta and the native Solenopsis geminata in the USA. Using 16S amplicon 454 pyrosequencing, bacterial communities of workers, brood, and soil from nest walls were compared between neighboring S. invicta and S. geminata colonies at Brackenridge Field Laboratory, Austin, Texas, with the aim of identifying potential pathogenic, commensal, or mutualistic microbial associates. Two samples of S. geminata workers showed high counts of Spiroplasma bacteria, a known pathogen or mutualist of other insects. A subsequent analysis using PCR and sequencing confirmed the presence of Spiroplasma in additional colonies of both Solenopsis species. Wolbachia was found in one alate sample of S. geminata, while one brood sample of S. invicta had a high count of Lactococcus. As expected, ant samples from both species showed much lower microbial diversity than the surrounding soil. Both ant species had similar overall bacterial diversities, although little overlap in specific microbes. To properly characterize a single bacterial community associated with a Solenopsis ant sample, rarefaction analyses indicate that it is necessary to obtain 5,000-10,000 sequences. Overall, 16S amplicon 454 pyrosequencing appears to be a cost-effective approach to screen whole microbial diversity associated with invasive ant species.


Assuntos
Formigas/microbiologia , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Animais , Bactérias/classificação , Bactérias/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
9.
Ecol Evol ; 11(5): 2307-2320, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717457

RESUMO

For nearly all organisms, dispersal is a fundamental life-history trait that can shape their ecology and evolution. Variation in dispersal capabilities within a species exists and can influence population genetic structure and ecological interactions. In fungus-gardening (attine) ants, co-dispersal of ants and mutualistic fungi is crucial to the success of this obligate symbiosis. Female-biased dispersal (and gene flow) may be favored in attines because virgin queens carry the responsibility of dispersing the fungi, but a paucity of research has made this conclusion difficult. Here, we investigate dispersal of the fungus-gardening ant Trachymyrmex septentrionalis using a combination of maternally (mitochondrial DNA) and biparentally inherited (microsatellites) markers. We found three distinct, spatially isolated mitochondrial DNA haplotypes; two were found in the Florida panhandle and the other in the Florida peninsula. In contrast, biparental markers illustrated significant gene flow across this region and minimal spatial structure. The differential patterns uncovered from mitochondrial DNA and microsatellite markers suggest that most long-distance ant dispersal is male-biased and that females (and concomitantly the fungus) have more limited dispersal capabilities. Consequently, the limited female dispersal is likely an important bottleneck for the fungal symbiont. This bottleneck could slow fungal genetic diversification, which has significant implications for both ant hosts and fungal symbionts regarding population genetics, species distributions, adaptive responses to environmental change, and coevolutionary patterns.

10.
Biol Lett ; 6(3): 329-32, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20071394

RESUMO

Animals often exhibit particular 'personalities', i.e. their behaviour is correlated across different situations. Recent studies suggest that this limitation of behavioural plasticity may be adaptive, since continuous adjustment of one's behaviour may be time-consuming and costly. In social insects, particularly aggressive workers might efficiently take over fighting in the contexts of both nest defence and 'policing', i.e. the regulation of kin conflict in the society. Here, we examine whether workers who engage in aggressive policing in the ant Platythyrea punctata play a prominent role also in nest defence against intruders. The participation of individuals in policing and nest defence was highly skewed and a minority of workers exhibited most of the aggression. Workers who attacked reproductives after experimental colony fusion were less active during nest defence and vice versa. This suggests that workers show situation-dependent behavioural plasticity rather than consistently aggressive personalities.


Assuntos
Agressão/fisiologia , Formigas/fisiologia , Animais , Comportamento Animal , Feminino , Masculino , Comportamento Social
11.
BMC Res Notes ; 13(1): 173, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32204727

RESUMO

OBJECTIVE: The objective of this study is to develop and identify polymorphic microsatellite markers for fungus-gardening (attine) ants in the genus Trachymyrmex sensu lato. These ants are important ecosystem engineers and have been a model group for understanding complex symbiotic systems, but very little is understood about the intraspecific genetic patterns across most North American attine species. These microsatellite markers will help to better study intraspecific population genetic structure, gene flow, mating habits, and phylogeographic patterns in these species and potentially other congeners. RESULTS: Using next-generation sequencing techniques, we identified 17 and 12 polymorphic microsatellite markers from T. septentrionalis and Mycetomoellerius (formerly Trachymyrmex) turrifex, respectively, and assessed the genetic diversity of each marker. We also analyzed the cross-amplification success of the T. septentrionalis markers in two other closely related Trachymyrmex species, and identified 10 and 12 polymorphic markers for T. arizonensis and T. pomonae, respectively.


Assuntos
Formigas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Polimorfismo Genético , Animais
12.
J Insect Physiol ; 98: 301-308, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28193479

RESUMO

Fungus-gardening or attine ants have outsourced most of their digestive function to a symbiotic fungus. The ants feed their fungus - essentially an external digestive organ - a variety of substrates of botanical origin, including fresh and dried flowers, leaves and insect frass (processed leaves). Although plant tissues are rich in fibers (lignocelluloses, hemicelluloses, pectins and starches) and the symbiotic fungus possesses the genetic and enzymatic machinery to metabolize these compounds, the highly derived attines, the leaf-cutters (Atta and Acromyrmex), are known to produce fiber-rich waste. While leaf-cutting ants are important consumers of primary plant tissue, there have been fewer studies on physiological activity of fungi grown by closely related ant species in the genus Trachymyrmex, which generally grow related species of fungi, have smaller colonies and consume a wider variety of fungal substrates in addition to fresh leaves and flowers. In this study, we measured the cellulase activity of the fungus-gardening ants Atta texana, Trachymyrmex arizonensis and T. septentrionalis. We then quantified fiber consumption of the fungus-gardening ants Trachymyrmex septentrionalis and Trachymyrmex arizonensis by comparing the amounts and percentages present in their food and in fungus garden refuse during a controlled feeding experiment over the span of several months. Finally, we compared waste composition of T. arizonensis colonies growing different fungal strains, because this species is known to cultivate multiple strains of Leucoagaricus in its native range. The leaf-cutting ant A. texana was found to have lower cellulytic activity than T. arizonensis or T. septentrionalis. Total lignocellulose and hemicellulose amounts were significantly lower in refuse piles than in the substrates fed to the Trachymyrmex colonies, thus these fibers were consumed by the fungal symbionts of these ant species. Although lignocellulose utilization was similar in two distinct fungal species grown by T. arizonensis colonies, hemicellulose utilization was higher in T. arizonensis colonies growing a derived leaf-cutting ant fungal symbiont than when growing a native type of symbiont. The results of this study demonstrate that fiber digestion in fungus-gardening ants is an outcome of ant-fungal interaction.


Assuntos
Agaricales/fisiologia , Formigas/microbiologia , Simbiose , Animais , Especificidade da Espécie
13.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26113689

RESUMO

Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically.


Assuntos
Formigas/microbiologia , Fungos/classificação , Consórcios Microbianos , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Fungos/genética , Fungos/isolamento & purificação , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Panamá , Pantoea/classificação , Pantoea/genética , Pantoea/isolamento & purificação , Filogenia , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA