Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO Rep ; 24(12): e57910, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983950

RESUMO

Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown. Here, we present the structure of the core Sec61/TRAP complex bound to a mammalian ribosome by cryogenic electron microscopy (cryo-EM). Ribosome interactions anchor the Sec61/TRAP complex in a conformation that renders the ER membrane locally thinner by significantly curving its lumenal leaflet. We propose that TRAP stabilizes the ribosome exit tunnel to assist nascent polypeptide insertion through Sec61 and provides a ratcheting mechanism into the ER lumen mediated by direct polypeptide interactions.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Animais , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Peptídeos/metabolismo , Transporte Proteico
2.
Bioinformatics ; 39(39 Suppl 1): i347-i356, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387131

RESUMO

MOTIVATION: Signal peptides (SPs) are short amino acid segments present at the N-terminus of newly synthesized proteins that facilitate protein translocation into the lumen of the endoplasmic reticulum, after which they are cleaved off. Specific regions of SPs influence the efficiency of protein translocation, and small changes in their primary structure can abolish protein secretion altogether. The lack of conserved motifs across SPs, sensitivity to mutations, and variability in the length of the peptides make SP prediction a challenging task that has been extensively pursued over the years. RESULTS: We introduce TSignal, a deep transformer-based neural network architecture that utilizes BERT language models and dot-product attention techniques. TSignal predicts the presence of SPs and the cleavage site between the SP and the translocated mature protein. We use common benchmark datasets and show competitive accuracy in terms of SP presence prediction and state-of-the-art accuracy in terms of cleavage site prediction for most of the SP types and organism groups. We further illustrate that our fully data-driven trained model identifies useful biological information on heterogeneous test sequences. AVAILABILITY AND IMPLEMENTATION: TSignal is available at: https://github.com/Dumitrescu-Alexandru/TSignal.


Assuntos
Aminoácidos , Sinais Direcionadores de Proteínas , Transporte Proteico , Benchmarking , Idioma
3.
J Nat Prod ; 83(4): 965-971, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32182062

RESUMO

Kendomycin is a small-molecule natural product that has gained significant attention due to reported cytotoxicity against pathogenic bacteria and fungi as well as a number of cancer cell lines. Despite significant biomedical interest and attempts to reveal its mechanism of action, the cellular target of kendomycin remains disputed. Herein it is shown that kendomycin induces cellular responses indicative of cation stress comparable to the effects of established iron chelators. Furthermore, addition of excess iron and copper attenuated kendomycin cytotoxicity in bacteria, yeast, and mammalian cells. Finally, NMR analysis demonstrated a direct interaction with cations, corroborating a close link between the observed kendomycin polypharmacology across different species and modulation of iron and/or copper levels.


Assuntos
Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Quelantes/farmacologia , Fungos/efeitos dos fármacos , Rifabutina/análogos & derivados , Cátions , Linhagem Celular , Cobre/metabolismo , Ferro/metabolismo , Leupeptinas/farmacologia , Testes de Sensibilidade Microbiana , Mutagênese , Rifabutina/farmacologia , Leveduras/efeitos dos fármacos
4.
Mol Membr Biol ; 30(1): 64-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22881431

RESUMO

Membrane-bound pyrophosphatases (M-PPases) are enzymes that enhance the survival of plants, protozoans and prokaryotes in energy constraining stress conditions. These proteins use pyrophosphate, a waste product of cellular metabolism, as an energy source for sodium or proton pumping. To study the structure and function of these enzymes we have crystallized two membrane-bound pyrophosphatases recombinantly produced in Saccharomyces cerevisae: the sodium pumping enzyme of Thermotoga maritima (TmPPase) and the proton pumping enzyme of Pyrobaculum aerophilum (PaPPase). Extensive crystal optimization has allowed us to grow crystals of TmPPase that diffract to a resolution of 2.6 Å. The decisive step in this optimization was in-column detergent exchange during the two-step purification procedure. Dodecyl maltoside was used for high temperature solubilization of TmPPase and then exchanged to a series of different detergents. After extensive screening, the new detergent, octyl glucose neopentyl glycol, was found to be the optimal for TmPPase but not PaPPase.


Assuntos
Proteínas de Membrana/química , Pirofosfatases/química , Cristalização , Detergentes/química , Ativação Enzimática , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Pyrobaculum/enzimologia , Pyrobaculum/genética , Pirofosfatases/genética , Pirofosfatases/isolamento & purificação , Proteínas Recombinantes de Fusão , Thermotoga maritima/enzimologia , Thermotoga maritima/genética , Difração de Raios X
5.
ACS Chem Biol ; 15(8): 2125-2136, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32608972

RESUMO

Coibamide A (CbA) is a marine natural product with potent antiproliferative activity against human cancer cells and a unique selectivity profile. Despite promising antitumor activity, the mechanism of cytotoxicity and specific cellular target of CbA remain unknown. Here, we develop an optimized synthetic CbA photoaffinity probe (photo-CbA) and use it to demonstrate that CbA directly targets the Sec61α subunit of the Sec61 protein translocon. CbA binding to Sec61 results in broad substrate-nonselective inhibition of ER protein import and potent cytotoxicity against specific cancer cell lines. CbA targets a lumenal cavity of Sec61 that is partially shared with known Sec61 inhibitors, yet profiling against resistance conferring Sec61α mutations identified from human HCT116 cells suggests a distinct binding mode for CbA. Specifically, despite conferring strong resistance to all previously known Sec61 inhibitors, the Sec61α mutant R66I remains sensitive to CbA. A further unbiased screen for Sec61α resistance mutations identified the CbA-resistant mutation S71P, which confirms nonidentical binding sites for CbA and apratoxin A and supports the susceptibility of the Sec61 plug region for channel inhibition. Remarkably, CbA, apratoxin A, and ipomoeassin F do not display comparable patterns of potency and selectivity in the NCI60 panel of human cancer cell lines. Our work connecting CbA activity with selective prevention of secretory and membrane protein biogenesis by inhibition of Sec61 opens up possibilities for developing new Sec61 inhibitors with improved drug-like properties that are based on the coibamide pharmacophore.


Assuntos
Depsipeptídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Canais de Translocação SEC/efeitos dos fármacos , Sítios de Ligação , Células Cultivadas , Depsipeptídeos/metabolismo , Humanos , Proteínas de Membrana/biossíntese , Marcadores de Fotoafinidade/química , Canais de Translocação SEC/metabolismo
6.
Cell Chem Biol ; 23(5): 561-566, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27203376

RESUMO

Apratoxin A is a cytotoxic natural product that prevents the biogenesis of secretory and membrane proteins. Biochemically, apratoxin A inhibits cotranslational translocation into the ER, but its cellular target and mechanism of action have remained controversial. Here, we demonstrate that apratoxin A prevents protein translocation by directly targeting Sec61α, the central subunit of the protein translocation channel. Mutagenesis and competitive photo-crosslinking studies indicate that apratoxin A binds to the Sec61 lateral gate in a manner that differs from cotransin, a substrate-selective Sec61 inhibitor. In contrast to cotransin, apratoxin A does not exhibit a substrate-selective inhibitory mechanism, but blocks ER translocation of all tested Sec61 clients with similar potency. Our results suggest that multiple structurally unrelated natural products have evolved to target overlapping but non-identical binding sites on Sec61, thereby producing distinct biological outcomes.


Assuntos
Depsipeptídeos/farmacologia , Canais de Translocação SEC/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Depsipeptídeos/química , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Estrutura Molecular , Transporte Proteico/efeitos dos fármacos , Canais de Translocação SEC/metabolismo , Relação Estrutura-Atividade
7.
Nat Commun ; 7: 13596, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922000

RESUMO

Membrane-bound pyrophosphatases (M-PPases), which couple proton/sodium ion transport to pyrophosphate synthesis/hydrolysis, are important in abiotic stress resistance and in the infectivity of protozoan parasites. Here, three M-PPase structures in different catalytic states show that closure of the substrate-binding pocket by helices 5-6 affects helix 13 in the dimer interface and causes helix 12 to move down. This springs a 'molecular mousetrap', repositioning a conserved aspartate and activating the nucleophilic water. Corkscrew motion at helices 6 and 16 rearranges the key ionic gate residues and leads to ion pumping. The pumped ion is above the ion gate in one of the ion-bound structures, but below it in the other. Electrometric measurements show a single-turnover event with a non-hydrolysable inhibitor, supporting our model that ion pumping precedes hydrolysis. We propose a complete catalytic cycle for both proton and sodium-pumping M-PPases, and one that also explains the basis for ion specificity.


Assuntos
Membrana Celular/enzimologia , Pirofosfatases/metabolismo , Thermotoga maritima/enzimologia , Vigna/enzimologia , Biocatálise , Cristalografia por Raios X , Ligação de Hidrogênio , Hidrólise , Íons , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína , Bombas de Próton/metabolismo , Pirofosfatases/química , Sódio/metabolismo
8.
Curr Opin Struct Biol ; 27: 38-47, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24768824

RESUMO

Membrane-bound pyrophosphatases (M-PPases) are homodimeric enzymes that couple the generation and utilization of membrane potentials to pyrophosphate (PPi) hydrolysis and synthesis. Since the discovery of the link between PPi use and proton transport in purple, non-sulphur bacteria in the 1960s, M-PPases have been found in all three domains of life and have been shown to have a crucial role in stress tolerance and in plant maturation. The discovery of sodium-pumping and sodium/proton-pumping M-PPases showed that the pumping specificity of these enzymes is not limited to protons, further suggesting that M-PPases are evolutionarily very ancient. The recent structures of two M-PPases, the Vigna radiata H(+)-pumping M-PPase and Thermotoga maritima Na(+)-pumping M-PPase, provide the basis for understanding the functional data. They show that M-PPases have a novel fold and pumping mechanism, different to the other primary pumps. This review discusses the current structural understanding of M-PPases and of ion selection among various M-PPases.


Assuntos
Prótons , Pirofosfatases/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Humanos , Dados de Sequência Molecular , Pirofosfatases/química
9.
FEBS Lett ; 587(13): 1863-9, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23684653

RESUMO

Soluble inorganic pyrophosphatases (PPases) catalyse an essential reaction, the hydrolysis of pyrophosphate to inorganic phosphate. In addition, an evolutionarily ancient family of membrane-integral pyrophosphatases couple this hydrolysis to Na(+) and/or H(+) pumping, and so recycle some of the free energy from the pyrophosphate. The structures of the H(+)-pumping mung bean PPase and the Na(+)-pumping Thermotoga maritima PPase solved last year revealed an entirely novel membrane protein containing 16 transmembrane helices. The hydrolytic centre, well above the membrane, is linked by a charged "coupling funnel" to the ionic gate about 20Å away. By comparing the active sites, fluoride inhibition data and the various models for ion transport, we conclude that membrane-integral PPases probably use binding of pyrophosphate to drive pumping.


Assuntos
Difosfatos/química , Pirofosfatases/química , Animais , Proteínas de Bactérias/química , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Estrutura Secundária de Proteína
10.
Science ; 337(6093): 473-6, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22837527

RESUMO

Membrane-integral pyrophosphatases (M-PPases) are crucial for the survival of plants, bacteria, and protozoan parasites. They couple pyrophosphate hydrolysis or synthesis to Na(+) or H(+) pumping. The 2.6-angstrom structure of Thermotoga maritima M-PPase in the resting state reveals a previously unknown solution for ion pumping. The hydrolytic center, 20 angstroms above the membrane, is coupled to the gate formed by the conserved Asp(243), Glu(246), and Lys(707) by an unusual "coupling funnel" of six α helices. Comparison with our 4.0-angstrom resolution structure of the product complex suggests that helix 12 slides down upon substrate binding to open the gate by a simple binding-change mechanism. Below the gate, four helices form the exit channel. Superimposing helices 3 to 6, 9 to 12, and 13 to 16 suggests that M-PPases arose through gene triplication.


Assuntos
Difosfatos/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Sódio/metabolismo , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Cálcio/química , Domínio Catalítico , Membrana Celular/enzimologia , Cristalografia por Raios X , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Pirofosfatases/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA