Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Microbiol ; 115(5): 849-859, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33112443

RESUMO

Parasites are by definition organisms that utilize resources from a host to support their existence, thus, promoting their ability to establish long-term infections and disease. Hence, sensing and acquiring nutrients for which the parasite and host compete is central to the parasitic mode of existence. Leishmania are flagellated kinetoplastid parasites that parasitize phagocytic cells, principally macrophages, of vertebrate hosts and the alimentary tract of sand fly vectors. Because nutritional supplies vary over time within both these hosts and are often restricted in availability, these parasites must sense a plethora of nutrients and respond accordingly. The flagellum has been recognized as an "antenna" that plays a core role in sensing environmental conditions, and various flagellar proteins have been implicated in sensing roles. In addition, these parasites exhibit non-flagellar intracellular mechanisms of nutrient sensing, several of which have been explored. Nonetheless, mechanistic details of these sensory pathways are still sparse and represent a challenging frontier for further experimental exploration.


Assuntos
Citosol/metabolismo , Flagelos/metabolismo , Leishmania/metabolismo , Leishmaniose/parasitologia , Nutrientes/metabolismo , Animais , Flagelos/genética , Humanos , Leishmania/genética , Leishmaniose/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
J Biol Chem ; 295(37): 13106-13122, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719012

RESUMO

Previous studies in Leishmania mexicana have identified the cytoskeletal protein KHARON as being important for both flagellar trafficking of the glucose transporter GT1 and for successful cytokinesis and survival of infectious amastigote forms inside mammalian macrophages. KHARON is located in three distinct regions of the cytoskeleton: the base of the flagellum, the subpellicular microtubules, and the mitotic spindle. To deconvolve the different functions for KHARON, we have identified two partner proteins, KHAP1 and KHAP2, which associate with KHARON. KHAP1 is located only in the subpellicular microtubules, whereas KHAP2 is located at the subpellicular microtubules and the base of the flagellum. Both KHAP1 and KHAP2 null mutants are unable to execute cytokinesis but are able to traffic GT1 to the flagellum. These results confirm that KHARON assembles into distinct functional complexes and that the subpellicular complex is essential for cytokinesis and viability of disease-causing amastigotes but not for flagellar membrane trafficking.


Assuntos
Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Flagelos/metabolismo , Leishmania mexicana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas do Citoesqueleto/genética , Flagelos/genética , Leishmania mexicana/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Transporte Proteico , Proteínas de Protozoários/genética
3.
PLoS Biol ; 11(7): e1001597, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23843742

RESUMO

Protein S-palmitoylation, a lipid modification mediated by members of the palmitoyltransferase family, serves as an important membrane-targeting mechanism in eukaryotes. Although changes in palmitoyltransferase expression are associated with various physiological and disease states, how these changes affect global protein palmitoylation and cellular function remains unknown. Using a bioorthogonal chemical reporter and labeling strategy to identify and analyze multiple cognate substrates of a single Erf2 palmitoyltransferase, we demonstrate that control of Erf2 activity levels underlies the differential modification of key substrates such as the Rho3 GTPase in vegetative and meiotic cells. We show further that modulation of Erf2 activity levels drives changes in the palmitoylome as cells enter meiosis and affects meiotic entry. Disruption of Erf2 function delays meiotic entry, while increasing Erf2 palmitoyltransferase activity triggers aberrant meiosis in sensitized cells. Erf2-induced meiosis requires the function of the Rho3 GTPase, which is regulated by its palmitoylation state. We propose that control of palmitoyltransferase activity levels provides a fundamental mechanism for modulating palmitoylomes and cellular functions.


Assuntos
Lipoilação/fisiologia , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Meiose/fisiologia
4.
Mol Cell ; 30(1): 98-107, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18406330

RESUMO

The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of Pol II-transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed, indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly, we found Tf1 contained sequences that activated transcription, and these substituted for elements of the ade6 promoter disrupted by integration.


Assuntos
Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Retroelementos/genética , Cromatina/química , Cromatina/metabolismo , DNA Intergênico/química , DNA Intergênico/genética , Frutose-Bifosfatase , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica
5.
J Virol ; 83(6): 2675-85, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109383

RESUMO

The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDDelta, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDDelta caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting.


Assuntos
DNA Complementar/metabolismo , Integrases/metabolismo , Recombinação Genética , Retroelementos , Schizosaccharomyces/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Imunoprecipitação da Cromatina , Integrases/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Alinhamento de Sequência , Deleção de Sequência
6.
Microbiol Mol Biol Rev ; 84(2)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32238446

RESUMO

While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.


Assuntos
Membrana Celular/metabolismo , Flagelos/metabolismo , Interações Hospedeiro-Parasita , Kinetoplastida/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Flagelos/genética , Humanos , Kinetoplastida/genética , Camundongos , Proteínas de Protozoários/genética
7.
mSphere ; 2(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567444

RESUMO

Many diverse intracellular pathogens, such as Legionella pneumophila, Chlamydia psittaci, Encephalitozoon sp., and Toxoplasma gondii, manipulate and relocate host cell organelles, including mitochondria. Toxoplasma tachyzoites use a secreted protein, mitochondrial association factor 1b (MAF1b), to drive the association between the host mitochondria and the membrane of the parasitophorous vacuole, in which the parasites grow. The identity of the host partner in this interaction, however, has not previously been identified. By exogenously expressing tagged MAF1b in mouse embryonic fibroblasts, we were able to isolate host cell proteins that specifically interact with MAF1b. We then verified these interactions in the MAF1b-expressing fibroblasts, as well as in the context of parasite infection in human fibroblasts and HeLa cells. The results show that a host cell mitochondrial complex, the mitochondrial intermembrane space bridging (MIB) complex, specifically interacts with MAF1b. We further demonstrate that a version of MAF1b that is deficient in host-mitochondrial association does not efficiently coprecipitate the MIB complex. Validation of the importance of the MAF1b-MIB interaction came from showing that knockdown of two MIB complex components, MIC60 and SAM50, substantially reduces mitochondrial association with the parasitophorous vacuole membrane. This interaction between a secreted membrane-integral parasite protein and a membrane-bound complex of a host organelle represents the first instance of organelle relocalization in which both the host and pathogen molecules are known and provides the foundation for more detailed biochemical studies. IMPORTANCE Parasites interact intimately with their hosts, and the interactions shape both parties. The common human parasite Toxoplasma gondii replicates exclusively in a vacuole in a host cell and alters its host cell's environment through secreted proteins. One of these secreted proteins, MAF1b, acts to concentrate mitochondria around the parasite's vacuole, and this relocalization alters the host immune response. Many other intracellular pathogens also recruit host mitochondria, but the identities of the partners that mediate this interaction have not previously been described in any infection. Here, we show that Toxoplasma MAF1b binds to the multifunctional MIB protein complex on the host mitochondria. Reducing the levels of the proteins in this mitochondrial complex reduces the close association of host cell mitochondria and the parasite's vacuole. This work provides new insight into a key host-pathogen interaction and identifies possible targets for future therapeutic intervention as well as a more molecular understanding of important biology.

8.
mBio ; 7(1): e02231-15, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838724

RESUMO

UNLABELLED: The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc-GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCE: Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Fatores de Virulência/metabolismo , Animais , Deleção de Genes , Macrófagos/parasitologia , Camundongos , Proteínas de Protozoários/genética , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , Fatores de Virulência/genética
9.
Cell Rep ; 7(5): 1716-1728, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24857659

RESUMO

CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma, but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen, ROP5, that elicits a CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense-granule antigen GRA6 is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense-granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion affects the efficacy of parasite-specific CD8 T cell responses.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Protozoários/imunologia , Via Secretória , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/química , Epitopos/química , Epitopos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Dados de Sequência Molecular , Proteínas de Protozoários/química , Toxoplasma/imunologia
11.
Mol Biol Cell ; 22(20): 3801-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21849474

RESUMO

The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that grows by linear extension at the cell tips, with a nearly constant width throughout the cell cycle. This simple geometry makes it an ideal system for studying the control of cellular dimensions. In this study, we carried out a near-genome-wide screen for mutants wider than wild-type cells. We found 11 deletion mutants that were wider; seven of the deleted genes are implicated in the control of the small GTPase Cdc42, including the Cdc42 guanine nucleotide exchange factor (GEF) Scd1 and the Cdc42 GTPase-activating protein (GAP) Rga4. Deletions of rga4 and scd1 had additive effects on cell width, and the proteins localized independently of one another, with Rga4 located at the cell sides and Scd1 at the cell tips. Activated Cdc42 localization is altered in rga4Δ, scd1Δ, and scd2Δ mutants. Delocalization and ectopic retargeting experiments showed that the localizations of Rga4 and Scd1 are crucial for their roles in determining cell width. We propose that the GAP Rga4 and the GEF Scd1 establish a gradient of activated Cdc42 within the cellular tip plasma membrane, and it is this gradient that determines cell growth-zone size and normal cell width.


Assuntos
Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Organismos Geneticamente Modificados/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Transdução de Sinais/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Divisão Celular/genética , Crescimento Celular , Forma Celular , Tamanho Celular , Citoesqueleto/genética , Proteínas Ativadoras de GTPase/deficiência , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/deficiência , Microscopia de Fluorescência , Microscopia de Interferência , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Plasmídeos , Ligação Proteica , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Transdução Genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/deficiência
12.
PLoS One ; 6(12): e27977, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194800

RESUMO

Eukaryotic cells often form polarized growth zones in response to internal or external cues. To understand the establishment of growth zones with specific dimensions we used fission yeast, which grows as a rod-shaped cell of near-constant width from growth zones located at the cell tips. Removing the cell wall creates a round spheroplast with a disorganized cytoskeleton and depolarized growth proteins. As spheroplasts recover, new growth zones form that resemble normal growing cell tips in shape and width, and polarized growth resumes. Regulators of the GTPase Cdc42, which control width in exponentially growing cells, also control spheroplast growth zone width. During recovery the Cdc42 scaffold Scd2 forms a polarized patch in the rounded spheroplast, demonstrating that a growth zone protein can organize independent of cell shape. Rga4, a Cdc42 GTPase activating protein (GAP) that is excluded from cell tips, is initially distributed throughout the spheroplast membrane, but is excluded from the growth zone after a stable patch of Scd2 forms. These results provide evidence that growth zones with normal width and protein localization can form de novo through sequential organization of cellular domains, and that the size of these growth zones is genetically controlled, independent of preexisting cell shape.


Assuntos
Schizosaccharomyces/crescimento & desenvolvimento , Esferoplastos/citologia , Estrutura Terciária de Proteína , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Esferoplastos/metabolismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA