RESUMO
The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.
Assuntos
COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidade , COVID-19/transmissão , Feminino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologiaRESUMO
Metastasis is the leading cause of cancer-related deaths and myeloid cells are critical in the metastatic microenvironment. Here, we explore the implications of reprogramming pre-metastatic niche myeloid cells by inducing trained immunity with whole beta-glucan particle (WGP). WGP-trained macrophages had increased responsiveness not only to lipopolysaccharide but also to tumor-derived factors. WGP in vivo treatment led to a trained immunity phenotype in lung interstitial macrophages, resulting in inhibition of tumor metastasis and survival prolongation in multiple mouse models of metastasis. WGP-induced trained immunity is mediated by the metabolite sphingosine-1-phosphate. Adoptive transfer of WGP-trained bone marrow-derived macrophages reduced tumor lung metastasis. Blockade of sphingosine-1-phosphate synthesis and mitochondrial fission abrogated WGP-induced trained immunity and its inhibition of lung metastases. WGP also induced trained immunity in human monocytes, resulting in antitumor activity. Our study identifies the metabolic sphingolipid-mitochondrial fission pathway for WGP-induced trained immunity and control over metastasis.
Assuntos
Neoplasias Pulmonares , beta-Glucanas , Animais , Camundongos , Humanos , Imunidade Treinada , Macrófagos , Lisofosfolipídeos/metabolismo , Monócitos , Neoplasias Pulmonares/patologia , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia , Microambiente TumoralRESUMO
Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/terapia , Mastócitos/enzimologia , Mastócitos/imunologia , Triptases/antagonistas & inibidores , Triptases/imunologia , Adolescente , Regulação Alostérica/imunologia , Animais , Linhagem Celular , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , CoelhosRESUMO
Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.
Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Tolerância Imunológica , Biossíntese de Proteínas , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Tolerância Imunológica/imunologia , Biossíntese de Proteínas/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Autoantígenos/imunologiaRESUMO
Although mice normally enter labor when their ovaries stop producing progesterone (luteolysis), parturition can also be triggered in this species through uterus-intrinsic pathways potentially analogous to the ones that trigger parturition in humans. Such pathways, however, remain largely undefined in both species. Here, we report that mice deficient in innate type 2 immunity experienced profound parturition delays when manipulated endocrinologically to circumvent luteolysis, thus obliging them to enter labor through uterus-intrinsic pathways. We found that these pathways were in part driven by the alarmin IL-33 produced by uterine interstitial fibroblasts. We also implicated important roles for uterine group 2 innate lymphoid cells, which demonstrated IL-33-dependent activation prior to labor onset, and eosinophils, which displayed evidence of elevated turnover in the prepartum uterus. These findings reveal a role for innate type 2 immunity in controlling the timing of labor onset through a cascade potentially relevant to human parturition.
Assuntos
Interleucina-33 , Luteólise , Gravidez , Feminino , Camundongos , Animais , Humanos , Interleucina-33/metabolismo , Imunidade Inata , Miométrio/metabolismo , Linfócitos , Parto/metabolismoRESUMO
Allergic immunity is orchestrated by group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells prominently arrayed at epithelial- and microbial-rich barriers. However, ILC2s and Th2 cells are also present in fibroblast-rich niches within the adventitial layer of larger vessels and similar boundary structures in sterile deep tissues, and it remains unclear whether they undergo dynamic repositioning during immune perturbations. Here, we used thick-section quantitative imaging to show that allergic inflammation drives invasion of lung and liver non-adventitial parenchyma by ILC2s and Th2 cells. However, during concurrent type 1 and type 2 mixed inflammation, IFNγ from broadly distributed type 1 lymphocytes directly blocked both ILC2 parenchymal trafficking and subsequent cell survival. ILC2 and Th2 cell confinement to adventitia limited mortality by the type 1 pathogen Listeria monocytogenes. Our results suggest that the topography of tissue lymphocyte subsets is tightly regulated to promote appropriately timed and balanced immunity.
Assuntos
Inflamação/imunologia , Interferon gama/imunologia , Subpopulações de Linfócitos/imunologia , Células Th2/imunologia , Animais , Morte Celular/imunologia , Movimento Celular/imunologia , Hipersensibilidade/imunologia , Imunidade Inata , Interleucina-33/imunologia , Interleucina-5/metabolismo , Listeria monocytogenes , Listeriose/imunologia , Listeriose/mortalidade , Fígado/imunologia , Pulmão/imunologia , Subpopulações de Linfócitos/metabolismo , Lisofosfolipídeos/imunologia , Camundongos , Tecido Parenquimatoso/imunologia , Esfingosina/análogos & derivados , Esfingosina/imunologia , Células Th1/imunologia , Células Th2/metabolismoRESUMO
Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT.
Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Animais , Comunicação Celular , Humanos , Camundongos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Células Estromais/metabolismoRESUMO
Exciting progress in the field of cancer immunotherapy has renewed the urgency of the need for basic studies of immunoregulation in both adaptive cell lineages and innate cell lineages. Here we found a central role for major histocompatibility complex (MHC) class I in controlling the phagocytic function of macrophages. Our results demonstrated that expression of the common MHC class I component ß2-microglobulin (ß2M) by cancer cells directly protected them from phagocytosis. We further showed that this protection was mediated by the inhibitory receptor LILRB1, whose expression was upregulated on the surface of macrophages, including tumor-associated macrophages. Disruption of either MHC class I or LILRB1 potentiated phagocytosis of tumor cells both in vitro and in vivo, which defines the MHC class I-LILRB1 signaling axis as an important regulator of the effector function of innate immune cells, a potential biomarker for therapeutic response to agents directed against the signal-regulatory protein CD47 and a potential target of anti-cancer immunotherapy.
Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Fagocitose/imunologia , Animais , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoterapia/métodos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/terapiaRESUMO
Functional micropeptides can be concealed within RNAs that appear to be noncoding. We discovered a conserved micropeptide, which we named myoregulin (MLN), encoded by a skeletal muscle-specific RNA annotated as a putative long noncoding RNA. MLN shares structural and functional similarity with phospholamban (PLN) and sarcolipin (SLN), which inhibit SERCA, the membrane pump that controls muscle relaxation by regulating Ca(2+) uptake into the sarcoplasmic reticulum (SR). MLN interacts directly with SERCA and impedes Ca(2+) uptake into the SR. In contrast to PLN and SLN, which are expressed in cardiac and slow skeletal muscle in mice, MLN is robustly expressed in all skeletal muscle. Genetic deletion of MLN in mice enhances Ca(2+) handling in skeletal muscle and improves exercise performance. These findings identify MLN as an important regulator of skeletal muscle physiology and highlight the possibility that additional micropeptides are encoded in the many RNAs currently annotated as noncoding.
Assuntos
Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , RNA Longo não Codificante/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Músculo Esquelético/citologia , Miocárdio/metabolismo , Estrutura Secundária de Proteína , Proteolipídeos/metabolismo , RNA Longo não Codificante/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Alinhamento de SequênciaRESUMO
Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.
Assuntos
Hominidae , Cromossomo X , Cromossomo Y , Animais , Feminino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/classificação , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telômero/genética , Cromossomo X/genética , Cromossomo Y/genética , Evolução Molecular , Variações do Número de Cópias de DNA/genética , Humanos , Espécies em Perigo de Extinção , Padrões de ReferênciaRESUMO
Myocardin, a potent coactivator of serum response factor (SRF), competes with ternary complex factor (TCF) proteins for SRF binding to balance opposing mitogenic and myogenic gene programs in cardiac and smooth muscle. Here we identify a cardiac lncRNA transcribed adjacent to myocardin, named CARDINAL, which antagonizes SRF-dependent mitogenic gene transcription in the heart. CARDINAL-deficient mice show ectopic TCF/SRF-dependent mitogenic gene expression and decreased cardiac contractility in response to age and ischemic stress. CARDINAL forms a nuclear complex with SRF and inhibits TCF-mediated transactivation of the promitogenic gene c-fos, suggesting CARDINAL functions as an RNA cofactor for SRF in the heart.
Assuntos
Regulação da Expressão Gênica/genética , Coração/fisiologia , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Deleção de Genes , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Fator de Resposta Sérica/genética , Transativadores/genética , Ativação TranscricionalRESUMO
Type 2 lymphocytes promote both physiologic tissue remodeling and allergic pathology, yet their physical tissue niches are poorly described. Here, we used quantitative imaging to define the tissue niches of group 2 innate lymphoid cells (ILC2s), which are critical instigators of type 2 immunity. We identified a dominant adventitial niche around lung bronchi and larger vessels in multiple tissues, where ILC2s localized with subsets of dendritic and regulatory T cells. However, ILC2s were most intimately associated with adventitial stromal cells (ASCs), a mesenchymal fibroblast-like subset that expresses interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP). In vitro, ASCs produced TSLP that supported ILC2 accumulation and activation. ILC2s and IL-13 drove reciprocal ASC expansion and IL-33 expression. During helminth infection, ASC depletion impaired lung ILC2 and Th2 cell accumulation and function, which are in part dependent on ASC-derived IL-33. These data indicate that adventitial niches are conserved sites where ASCs regulate type 2 lymphocyte expansion and function.
Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Células Estromais/imunologia , Animais , Brônquios/imunologia , Citocinas/imunologia , Interleucina-13/imunologia , Interleucina-33/imunologia , Camundongos , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Linfopoietina do Estroma do TimoRESUMO
Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Ativação Linfocitária/imunologia , Metaboloma , Metabolômica , Animais , Proliferação de Células , Cromatografia Gasosa-Espectrometria de Massas , Glicólise , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/genética , Metabolômica/métodos , Camundongos , Estresse Oxidativo , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/virologiaRESUMO
The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.
Assuntos
Mudança Climática , Fósforo , Floresta Úmida , Solo , Árvores , Clima Tropical , Aclimatação , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Sequestro de Carbono , Cátions/metabolismo , Cátions/farmacologia , Mudança Climática/estatística & dados numéricos , Modelos Biológicos , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Fósforo/metabolismo , Fósforo/farmacologia , Solo/química , Árvores/efeitos dos fármacos , Árvores/metabolismo , IncertezaRESUMO
Comprehensive genome annotation is essential to understand the impact of clinically relevant variants. However, the absence of a standard for clinical reporting and browser display complicates the process of consistent interpretation and reporting. To address these challenges, Ensembl/GENCODE1 and RefSeq2 launched a joint initiative, the Matched Annotation from NCBI and EMBL-EBI (MANE) collaboration, to converge on human gene and transcript annotation and to jointly define a high-value set of transcripts and corresponding proteins. Here, we describe the MANE transcript sets for use as universal standards for variant reporting and browser display. The MANE Select set identifies a representative transcript for each human protein-coding gene, whereas the MANE Plus Clinical set provides additional transcripts at loci where the Select transcripts alone are not sufficient to report all currently known clinical variants. Each MANE transcript represents an exact match between the exonic sequences of an Ensembl/GENCODE transcript and its counterpart in RefSeq such that the identifiers can be used synonymously. We have now released MANE Select transcripts for 97% of human protein-coding genes, including all American College of Medical Genetics and Genomics Secondary Findings list v3.0 (ref. 3) genes. MANE transcripts are accessible from major genome browsers and key resources. Widespread adoption of these transcript sets will increase the consistency of reporting, facilitate the exchange of data regardless of the annotation source and help to streamline clinical interpretation.
Assuntos
Biologia Computacional , Bases de Dados Genéticas , Genômica , Genoma , Humanos , Disseminação de Informação , Anotação de Sequência Molecular , National Library of Medicine (U.S.) , Estados UnidosRESUMO
The EMBO Journal discusses the current state of RNA research and presents a series of review articles throughout 2023 that will cover various aspects of RNA biology.
RESUMO
The ability to rapidly adapt to novel situations is essential for survival, and this flexibility is impaired in many neuropsychiatric disorders1. Thus, understanding whether and how novelty prepares, or primes, brain circuitry to facilitate cognitive flexibility has important translational relevance. Exposure to novelty recruits the hippocampus and medial prefrontal cortex (mPFC)2 and may prime hippocampal-prefrontal circuitry for subsequent learning-associated plasticity. Here we show that novelty resets the neural circuits that link the ventral hippocampus (vHPC) and the mPFC, facilitating the ability to overcome an established strategy. Exposing mice to novelty disrupted a previously encoded strategy by reorganizing vHPC activity to local theta (4-12 Hz) oscillations and weakening existing vHPC-mPFC connectivity. As mice subsequently adapted to a new task, vHPC neurons developed new task-associated activity, vHPC-mPFC connectivity was strengthened, and mPFC neurons updated to encode the new rules. Without novelty, however, mice adhered to their established strategy. Blocking dopamine D1 receptors (D1Rs) or inhibiting novelty-tagged cells that express D1Rs in the vHPC prevented these behavioural and physiological effects of novelty. Furthermore, activation of D1Rs mimicked the effects of novelty. These results suggest that novelty promotes adaptive learning by D1R-mediated resetting of vHPC-mPFC circuitry, thereby enabling subsequent learning-associated circuit plasticity.
Assuntos
Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Feminino , Hipocampo/citologia , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/citologiaRESUMO
The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.
Assuntos
Saccharomyces cerevisiae , Esteróis , Esteróis/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Glicoproteínas de Membrana/metabolismoRESUMO
Looking back at the journal's first issue in January 1982 provides an opportunity to reflect on its historical development and to introduce upcoming initiatives.