RESUMO
Eczema (atopic dermatitis, AD) is a skin disease characterized by skin barrier dysfunction due to various factors, including genetics, immune system abnormalities, and environmental triggers. Application of emollients and topical drugs such as corticosteroids and calcineurin inhibitors form the mainstay of treatments for this challenging condition. This review aims to summarize the recent advances made in phytochemical-based topical applications to treat AD and the different carriers that are being used. In this review, the clinical efficacy of several plant extracts and bioactive phytochemical compounds in treating AD are discussed. The anti-atopic effects of the herbs are evident through improvements in the Scoring Atopic Dermatitis (SCORAD) index, reduced epidermal thickness, decreased transepidermal water loss, and alleviated itching and dryness in individuals affected by AD as well as in AD mouse models. Histopathological studies and serum analyses conducted in AD mouse models demonstrated a reduction in key inflammatory factors, including thymic stromal lymphopoietin (TSLP), serum immunoglobulin E (IgE), and interleukins (IL). Additionally, there was an observed upregulation of the filaggrin (FLG) gene, which regulates the proteins constituting the stratum corneum, the outermost layer of the epidermis. Carriers play a crucial role in topical drug applications, influencing dose delivery, retention, and bioavailability. This discussion delves into the efficacy of various nanocarriers, including liposomes, ethosomes, nanoemulsions, micelles, nanocrystals, solid-lipid nanoparticles, and polymeric nanoparticles. Consequently, the potential long-term side effects such as atrophy, eruptions, lymphoma, pain, and allergic reactions that are associated with current topical treatments, including emollients, topical corticosteroids, topical calcineurin inhibitors, and crisaborole, can potentially be mitigated through the use of phytochemical-based natural topical treatments.
Assuntos
Eczema , Proteínas Filagrinas , Compostos Fitoquímicos , Humanos , Animais , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Eczema/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Administração Tópica , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologiaRESUMO
Oncolytic viruses (OVs) represent a promising new class of cancer therapeutics and cause antitumor effects by two major mechanisms: (1) directly killing cancer cells in a process known as oncolysis, or (2) initiating a powerful antitumor immune response. Interestingly, energy metabolism, within either cancer cells or immune cells, plays a pivotal role in defining the outcome of OV-mediated antitumor effects. Following therapeutic administration, OVs must hijack host cell metabolic pathways to acquire building blocks such as nucleotides, lipids, and amino acids for the process of replication that is necessary for oncolysis. Additionally, OV-stimulated antitumor immune responses are highly dependent on the metabolic state within the tumor microenvironment. Thus, metabolic reprogramming strategies bear the potential to enhance the efficacy of both OV-mediated oncolysis and antitumor immune responses.
Assuntos
Reprogramação Celular/genética , Metabolismo Energético/genética , Terapia Genética , Vetores Genéticos/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Imunomodulação , Redes e Vias Metabólicas/genética , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Fosforilação Oxidativa , Resultado do TratamentoRESUMO
The efficacy of oncolytic viruses (OVs), such as reovirus, is dictated by host immune responses, including those mediated by the pro- versus anti-inflammatory macrophages. As such, a detailed understanding of the interaction between reovirus and different macrophage types is critical for therapeutic efficacy. To explore reovirus-macrophage interactions, we performed tandem mass tag (TMT)-based quantitative temporal proteomics on mouse bone marrow-derived macrophages (BMMs) generated with two cytokines, macrophage colony stimulating factor (M-CSF) and granulocytic-macrophage colony stimulating factor (GM-CSF), representing anti- and proinflammatory macrophages, respectively. We quantified 6863 proteins across five time points in duplicate, comparing M-CSF (M-BMM) and GM-CSF (GM-BMM) in response to OV. We find that GM-BMMs have lower expression of key intrinsic proteins that facilitate an antiviral immune response, express higher levels of reovirus receptor protein JAM-A, and are more susceptible to oncolytic reovirus infection compared to M-BMMs. Interestingly, although M-BMMs are less susceptible to reovirus infection and subsequent cell death, they initiate an antireovirus adaptive T cell immune response comparable to that of GM-BMMs. Taken together, these data describe distinct proteome differences between these two macrophage populations in terms of their ability to mount antiviral immune responses.
Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Fator Estimulador de Colônias de Macrófagos , Animais , Medula Óssea , Células da Medula Óssea , Células Cultivadas , Camundongos , ProteomaRESUMO
A lack of effective treatment is one of the main factors contributing to gastric cancer-related death. Discovering effective targets and understanding their underlying anti-cancer mechanism are key to achieving the best response to treatment and to limiting side effects. Although recent studies have shown that the cation channel transient receptor potential melastatin-2 (TRPM2) is crucial for cancer cell survival, the exact mechanism remains unclear, limiting its therapeutic potential. Here, using molecular and functional assays, we investigated the role of TRPM2 in survival of gastric cancer cells. Our results indicated that TRPM2 knockdown in AGS and MKN-45 cells decreases cell proliferation and enhances apoptosis. We also observed that the TRPM2 knockdown impairs mitochondrial metabolism, indicated by a decrease in basal and maximal mitochondrial oxygen consumption rates and ATP production. These mitochondrial defects coincided with a decrease in autophagy and mitophagy, indicated by reduced levels of autophagy- and mitophagy-associated proteins (i.e. ATGs, LC3A/B II, and BNIP3). Moreover, we found that TRPM2 modulates autophagy through a c-Jun N-terminal kinase (JNK)-dependent and mechanistic target of rapamycin-independent pathway. We conclude that in the absence of TRPM2, down-regulation of the JNK-signaling pathway impairs autophagy, ultimately causing the accumulation of damaged mitochondria and death of gastric cancer cells. Of note, by inhibiting cell proliferation and promoting apoptosis, the TRPM2 down-regulation enhanced the efficacy of paclitaxel and doxorubicin in gastric cancer cells. Collectively, we provide compelling evidence that TRPM2 inhibition may benefit therapeutic approaches for managing gastric cancer.
Assuntos
Adenocarcinoma/metabolismo , Apoptose , Autofagia , Mitofagia , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/metabolismo , Canais de Cátion TRPM/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Registros Eletrônicos de Saúde , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosforilação Oxidativa/efeitos dos fármacos , Paclitaxel/farmacologia , Interferência de RNA , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genéticaRESUMO
Reticulon-4 (RTN4), commonly known as a neurite outgrowth inhibitor (Nogo), is emerging as an important player in human cancers. Clinically, we found lower RTN4 expression in patient-derived tumors was associated with significantly better survival in lung, breast, cervical, and renal cancer patients. To identify the role of RTN4 in cancer biology, we performed mass spectrometry-based quantitative proteomic analysis on cancer cells following RTN4 knockdown and found its link with pro-survival as well as cytoskeleton-related processes. Subsequent mechanistic investigations revealed that RTN4 regulates lipid homeostasis, AKT signaling, and cytoskeleton modulation. In particular, downregulation of RTN4 reduced sphingomyelin synthesis and impaired plasma membrane localization of AKT, wherein AKT phosphorylation, involved in many cancers, was significantly reduced without any comparable effect on AKT-related upstream kinases, in a sphingolipid-dependent manner. Furthermore, knockdown of RTN4 retarded proliferation of cancer cells in vitro as well as tumor xenografts in mice. Finally, RTN4 knockdown affected tubulin stability and promoted higher cytotoxic effects with chemotherapeutic paclitaxel in cancer cells both in vitro and in vivo. In summary, RTN4 is involved in carcinogenesis and represents a molecular candidate that may be targeted to achieve desired antitumor effects in clinics.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes/métodos , Proteínas Nogo/genética , Paclitaxel/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Paclitaxel/farmacologia , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Obstructive sleep apnoea (OSA) is the repetitive closure of the upper airway during sleep. This results in disturbed sleep and excessive daytime sleepiness. It is a risk factor for long-term cardiovascular morbidity. Continuous positive airway pressure (CPAP) machines can be applied during sleep. They deliver air pressure by a nasal or oronasal mask to prevent the airway from closing, reducing sleep disturbance and improving sleep quality. Some people find them difficult to tolerate because of high pressure levels and other symptoms such as a dry mouth. Switching to machines that vary the level of air pressure required to reduce sleep disturbance could increase comfort and promote more regular use. Humidification devices humidify the air that is delivered to the upper airway through the CPAP circuit. Humidification may reduce dryness of the throat and mouth and thus improve CPAP tolerability. This updated Cochrane Review looks at modifying the delivery of positive pressure and humidification on machine usage and other clinical outcomes in OSA. OBJECTIVES: To determine the effects of positive pressure modification or humidification on increasing CPAP machine usage in adults with OSA. SEARCH METHODS: We searched Cochrane Airways Specialised Register and clinical trials registries on 15 October 2018. SELECTION CRITERIA: Randomised parallel group or cross-over trials in adults with OSA. We included studies that compared automatically adjusting CPAP (auto-CPAP), bilevel positive airway pressure (bi-PAP), CPAP with expiratory pressure relief (CPAPexp), heated humidification plus fixed CPAP, automatically adjusting CPAP with expiratory pressure relief, Bi-PAP with expiratory pressure relief, auto bi-PAP and CPAPexp with wakefulness detection with fixed pressure setting. DATA COLLECTION AND ANALYSIS: We used standard methods expected by Cochrane. We assessed the certainty of evidence using GRADE for the outcomes of machine usage, symptoms (measured by the Epworth Sleepiness Scale (ESS)), Apnoea Hypopnoea Index (AHI), quality of life measured by Functional Outcomes of Sleep Questionnaire (FOSQ), blood pressure, withdrawals and adverse events (e.g. nasal blockage or mask intolerance). The main comparison of interest in the review is auto-CPAP versus fixed CPAP. MAIN RESULTS: We included 64 studies (3922 participants, 75% male). The main comparison of auto-CPAP with fixed CPAP is based on 36 studies with 2135 participants from Europe, USA, Hong Kong and Australia. The majority of studies recruited participants who were recently diagnosed with OSA and had not used CPAP previously. They had excessive sleepiness (ESS: 13), severe sleep disturbance (AHI ranged from 22 to 59), and average body mass index (BMI) of 35 kg/m2. Interventions were delivered at home and the duration of most studies was 12 weeks or less. We judged that studies at high or unclear risk of bias likely influenced the effect of auto-CPAP on machine usage, symptoms, quality of life and tolerability, but not for other outcomes. Primary outcome Compared with average usage of about five hours per night with fixed CPAP, people probably use auto-CPAP for 13 minutes longer per night at about six weeks (mean difference (MD) 0.21 hours/night, 95% confidence interval (CI) 0.11 to 0.31; 31 studies, 1452 participants; moderate-certainty evidence). We do not have enough data to determine whether auto-CPAP increases the number of people who use machines for more than four hours per night compared with fixed CPAP (odds ratio (OR) 1.16, 95% CI 0.75 to 1.81; 2 studies, 346 participants; low-certainty evidence). Secondary outcomes Auto-CPAP probably reduces daytime sleepiness compared with fixed CPAP at about six weeks by a small amount (MD -0.44 ESS units, 95% CI -0.72 to -0.16; 25 studies, 1285 participants; moderate-certainty evidence). AHI is slightly higher with auto-CPAP than with fixed CPAP (MD 0.48 events per hour, 95% CI 0.16 to 0.80; 26 studies, 1256 participants; high-certainty evidence), although it fell with both machine types from baseline values in the studies. Ten per cent of people in auto-CPAP and 11% in the fixed CPAP arms withdrew from the studies (OR 0.90, 95% CI 0.64 to 1.27; moderate-certainty evidence). Auto-CPAP and fixed CPAP may have similar effects on quality of life, as measured by the FOSQ but more evidence is needed to be confident in this result (MD 0.12, 95% CI -0.21 to 0.46; 3 studies, 352 participants; low-certainty evidence). Two studies (353 participants) provided data on clinic-measured blood pressure. Auto-CPAP may be slightly less effective at reducing diastolic blood pressure compared to fixed CPAP (MD 2.92 mmHg, 95% CI 1.06 to 4.77 mmHg; low-certainty evidence). The two modalities of CPAP probably do not differ in their effects on systolic blood pressure (MD 1.87 mmHg, 95% CI -1.08 to 4.82; moderate-certainty evidence). Nine studies (574 participants) provided information on adverse events such as nasal blockage, dry mouth, tolerance of treatment pressure and mask leak. They used different scales to capture these outcomes and due to variation in the direction and size of effect between the studies, the comparative effects on tolerability outcomes are uncertain (very low-certainty evidence). The evidence base for other interventions is smaller, and does not provide sufficient information to determine whether there are important differences between pressure modification strategies and fixed CPAP on machine usage outcomes, symptoms and quality of life. As with the evidence for the auto-CPAP, adverse events are measured disparately. AUTHORS' CONCLUSIONS: In adults with moderate to severe sleep apnoea starting positive airway pressure therapy, auto-CPAP probably increases machine usage by about 13 minutes per night. The effects on daytime sleepiness scores with auto-CPAP are not clinically meaningful. AHI values are slightly lower with fixed CPAP. Use of validated quality of life instruments in the studies to date has been limited, although where they have been used the effect sizes have not exceeded proposed clinically important differences. The adoption of a standardised approach to measuring tolerability would help decision-makers to balance benefits with harms from the different treatment options available. The evidence available for other pressure modification strategies does not provide a reliable basis on which to draw firm conclusions. Future studies should look at the effects of pressure modification devices and humidification in people who have already used CPAP but are unable to persist with treatment.
Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Umidificadores , Apneia Obstrutiva do Sono/terapia , Adulto , Pressão Positiva Contínua nas Vias Aéreas/métodos , Humanos , Avaliação de Resultados em Cuidados de Saúde , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Myeloid cells play a central role in the context of viral eradication, yet precisely how these cells differentiate throughout the course of acute infections is poorly understood. In this study, we have developed a novel quantitative temporal in vivo proteomics (QTiPs) platform to capture proteomic signatures of temporally transitioning virus-driven myeloid cells directly in situ, thus taking into consideration host-virus interactions throughout the course of an infection. QTiPs, in combination with phenotypic, functional, and metabolic analyses, elucidated a pivotal role for inflammatory CD11b+, Ly6G-, Ly6Chigh-low cells in antiviral immune response and viral clearance. Most importantly, the time-resolved QTiPs data set showed the transition of CD11b+, Ly6G-, Ly6Chigh-low cells into M2-like macrophages, which displayed increased antigen-presentation capacities and bioenergetic demands late in infection. We elucidated the pivotal role of myeloid cells in virus clearance and show how these cells phenotypically, functionally, and metabolically undergo a timely transition from inflammatory to M2-like macrophages in vivo. With respect to the growing appreciation for in vivo examination of viral-host interactions and for the role of myeloid cells, this study elucidates the use of quantitative proteomics to reveal the role and response of distinct immune cell populations throughout the course of virus infection.
Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Células Mieloides/metabolismo , Proteômica/métodos , Infecções por Reoviridae/genética , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Biomarcadores/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Diferenciação Celular , Proliferação de Células , Deleção de Genes , Regulação da Expressão Gênica , Ontologia Genética , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Células Mieloides/imunologia , Células Mieloides/virologia , Orthoreovirus de Mamíferos/crescimento & desenvolvimento , Orthoreovirus de Mamíferos/patogenicidade , Receptores CCR2/genética , Receptores CCR2/imunologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Transdução de Sinais , Fatores de TempoRESUMO
The fatal neurodegenerative disorder Niemann-Pick type C (NPC) is caused in most cases by mutations in NPC1, which encodes the late endosomal NPC1 protein. Loss of NPC1 disrupts cholesterol trafficking from late endosomes to the endoplasmic reticulum and plasma membrane, causing cholesterol accumulation in late endosomes/lysosomes. Neurons are particularly vulnerable to this cholesterol trafficking defect, but the pathogenic mechanisms through which NPC1 deficiency causes neuronal dysfunction remain largely unknown. Herein, we have investigated amino acid metabolism in cerebella of NPC1-deficient mice at different stages of NPC disease. Imbalances in amino acid metabolism were evident from increased branched chain amino acid and asparagine levels and altered expression of key enzymes of glutamine/glutamate metabolism in presymptomatic and early symptomatic NPC1-deficient cerebellum. Increased levels of several amino acid intermediates of one-carbon metabolism indicated disturbances in folate and methylation pathways. Alterations in DNA methylation were apparent in decreased expression of DNA methyltransferase 3a and methyl-5'-cytosine-phosphodiester-guanine-domain binding proteins, reduced 5-methylcytosine immunoreactivity in the molecular and Purkinje cell layers, demethylation of genome-wide repetitive LINE-1 elements, and hypermethylation in specific promoter regions of single-copy genes in NPC1-deficient cerebellum at early stages of the disease. Alterations in amino acid metabolism and epigenetic changes in the cerebellum at presymptomatic stages of NPC disease represent previously unrecognized mechanisms of NPC pathogenesis.
Assuntos
Cerebelo/metabolismo , Metilação de DNA/fisiologia , Doença de Niemann-Pick Tipo C/metabolismo , Aminoácidos/metabolismo , Animais , Cerebelo/patologia , Imunoprecipitação da Cromatina , DNA Metiltransferase 3A , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Doença de Niemann-Pick Tipo C/patologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: Sepsis is a systemic response to infection that can affect brain function by inducing resident cells (including astrocytes and microglia) to generate brain chemokines and cytokines. However, there are few studies on the human brain. Since this information may shed further light on pathogenesis, our study objective was to measure the expression of 36 chemokines and cytokines in autopsied brain from 3 cases of sepsis and 10 controls, and to relate this to astrocyte and microglial activation. METHODS: The right frontal pole was removed at autopsy and chemokine and cytokine expression measured by multiplexed enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (qPCR). Immunohistochemistry and image analysis were carried out to determine the expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, and CD68 and CD45, markers of activated microglial cells. RESULTS: Concentrations of the chemokines CXCL8, CXCL10, CXCL12, CCL13 and CCL22 were increased in pooled data from the three cases of sepsis (p<0.05); however, their messenger RNA (mRNA) expression was unaltered. CXCL13, CXCL1, CXCL2, CCL1, CCL2, CCL8, CCL20, (interleukin) IL-16, IL-1ß and (tumour necrosis factor) TNF concentrations showed increases in two of three sepsis cases. Additionally, individual sepsis cases showed increases in mRNA expression for HDAC (histone deacetylase) 6 and EIF (eukaryotic translation initiation factor) 4A2. Brain GFAP expression was significantly increased (p<0.05) in pooled data from the three sepsis cases. Individual sepsis cases showed increases in CD68 or CD45 expression. CONCLUSIONS: These expression patterns add to our understanding of the pathogenesis of sepsis and its effects on the brain.
Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Sepse/patologia , Idoso , Citocinas/genética , Ensaio de Imunoadsorção Enzimática , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismoRESUMO
Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.
Assuntos
Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosfoproteínas/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Colesterol/genética , Retículo Endoplasmático/genética , Humanos , Mitocôndrias/genética , Fosfoproteínas/genéticaRESUMO
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD+ an intriguing target for cancer therapeutics. NAD+ is mainly synthesized by the NAD+ salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD+ salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD+ depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD+ causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD+ levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD+ salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target.
Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular/métodos , NAD/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neoplasias/complicações , Nicotinamida Fosforribosiltransferase/metabolismoRESUMO
Niemann-Pick type C1 (NPC1) is a late endosomal transmembrane protein, which, together with NPC2 in the endosome lumen, mediates the transport of endosomal cholesterol to the plasma membrane and endoplasmic reticulum. Loss of function of NPC1 or NPC2 leads to cholesterol accumulation in late endosomes and causes neuronal dysfunction and neurodegeneration. Recent studies indicate that cholesterol also accumulates in mitochondria of NPC1-deficient cells and brain tissue and that NPC1 deficiency leads to alterations in mitochondrial function and energy metabolism. Here, we have investigated the effects of increased mitochondrial cholesterol levels on energy metabolism, using RNA interference to deplete Chinese hamster ovary cells of NPC1 alone or in combination with MLN64, which mediates endosomal cholesterol transport to mitochondria. Mitochondrial cholesterol levels were also altered by depletion of NPC2 in combination with the expression of NPC2 mutants. We found that the depletion of NPC1 increased lactate secretion, decreased glutamine-dependent mitochondrial respiration, and decreased ATP transport across mitochondrial membranes. These metabolic alterations did not occur when transport of endosomal cholesterol to mitochondria was blocked. In addition, the elevated mitochondrial cholesterol levels in NPC1-depleted cells and in NPC2-depleted cells expressing mutant NPC2 that allows endosomal cholesterol trafficking to mitochondria were associated with increased expression of the antioxidant response factor Nrf2. Antioxidant treatment not only prevented the increase in Nrf2 mRNA levels but also prevented the increased lactate secretion in NPC1-depleted cells. These results suggest that mitochondrial cholesterol accumulation can increase oxidative stress and in turn cause increased glycolysis to lactate and other metabolic alterations.
Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Metabolismo Energético , Glicoproteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Animais , Células CHO , Proteínas de Transporte/genética , Linhagem Celular , Cricetinae , Cricetulus , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ácido Láctico/metabolismo , Glicoproteínas de Membrana/genética , Proteína C1 de Niemann-Pick , Interferência de RNARESUMO
Mitochondrial cholesterol is maintained within a narrow range to regulate steroid and oxysterol synthesis and to ensure mitochondrial function. Mitochondria acquire cholesterol through several pathways from different cellular pools. Here we have characterized mitochondrial import of endosomal cholesterol using Chinese hamster ovary cells expressing a CYP11A1 fusion protein that converts cholesterol to pregnenolone at the mitochondrial inner membrane. RNA interference-mediated depletion of the voltage-dependent anion channel 1 in the mitochondrial outer membrane or of Niemann-Pick Type C2 (NPC2) in the endosome lumen decreased arrival of cholesterol at the mitochondrial inner membrane. Expression of NPC2 mutants unable to transfer cholesterol to NPC1 still restored mitochondrial cholesterol import in NPC2-depleted cells. Transport assays in semi-permeabilized cells showed nonvesicular cholesterol trafficking directly from endosomes to mitochondria that did not require cytosolic transport proteins but that was reduced in the absence of NPC2. Our findings indicate that NPC2 delivers cholesterol to the perimeter membrane of late endosomes, where it becomes available for transport to mitochondria without requiring NPC1.
Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Endossomos/química , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Animais , Transporte Biológico , Células CHO , Proteínas de Transporte/genética , Cricetinae , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Glicoproteínas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/deficiência , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteína C1 de Niemann-Pick , Proteínas de Transporte Vesicular , Canal de Ânion 1 Dependente de Voltagem/metabolismoRESUMO
Narcolepsy and related central disorders of hypersomnolence may present to the sleep clinic with excessive daytime sleepiness. A strong clinical suspicion and awareness of the diagnostic clues, such as cataplexy, are essential to avoid unnecessary diagnostic delay. This review provides an overview of the epidemiology, pathophysiology, clinical features, diagnostic criteria and management of narcolepsy and related disorders, including idiopathic hypersomnia, Kleine-Levin syndrome (recurrent episodic hypersomnia) and secondary central disorders of hypersomnolence.
RESUMO
CD8 T cells play a central role in antiviral immunity. Type I interferons are among the earliest responders after virus exposure and can cause extensive reprogramming and antigen-independent bystander activation of CD8 T cells. Although bystander activation of pre-existing memory CD8 T cells is known to play an important role in host defense and immunopathology, its impact on naïve CD8 T cells remains underappreciated. Here we report that exposure to reovirus, both in vitro or in vivo, promotes bystander activation of naïve CD8 T cells within 24 hours and that this distinct subtype of CD8 T cell displays an innate, antiviral, type I interferon sensitized signature. The induction of bystander naïve CD8 T cells is STAT1 dependent and regulated through nicotinamide phosphoribosyl transferase (NAMPT)-mediated enzymatic actions within NAD+ salvage metabolic biosynthesis. These findings identify a novel aspect of CD8 T cell activation following virus infection with implications for human health and physiology.
Assuntos
NAD , Viroses , Humanos , Linfócitos T CD8-Positivos , Antígenos , AntiviraisRESUMO
BACKGROUND: The COVID-19 pandemic has put considerable strain on healthcare systems. AIM: To investigate the effect of the COVID-19 pandemic on 30-day in-hospital mortality, length of stay (LOS) and resource utilization in acute medical care. METHODS: We compared emergency medical admissions to a single secondary care centre during 2020 to the preceding 18 years (2002-2019). We investigated 30-day in-hospital mortality with a multiple variable logistic regression model. Utilization of procedures/services was related to LOS with zero truncated Poisson regression. RESULTS: There were 132,715 admissions in 67,185 patients over the 19-year study. There was a linear reduction in 30-day in-hospital mortality over time; over the most recent 5 years (2016-2020), there was a relative risk reduction of 36%, from 7.9 to 4.3% with a number needed to treat of 27.7. Emergency medical admissions increased 18.8% to 10,452 in 2020 with COVID-19 admissions representing 3.5%. 18.6% of COVID-19 cases required ICU admission with a median stay of 10.1 days (IQR 3.8, 16.0). COVID-19 was a significant univariate predictor of 30-day in-hospital mortality, 18.5% (95%CI: 13.9, 23.1) vs. 3.0% (95%CI: 2.7, 3.4)-OR 7.3 (95%CI: 5.3, 10.1). ICU admission was the dominant outcome predictor-OR 12.4 (95%CI: 7.7, 20.1). COVID-19 mortality in the last third of 2020 improved-OR 0.64 (95%CI: 0.47, 0.86). Hospital LOS and resource utilization were increased. CONCLUSION: A diagnosis of COVID-19 was associated with significantly increased mortality and LOS but represented only 3.5% of admissions and did not attenuate the established temporal decline in overall in-hospital mortality.
Assuntos
COVID-19 , COVID-19/terapia , Mortalidade Hospitalar , Hospitais , Humanos , Tempo de Internação , Pandemias , Admissão do Paciente , Estudos RetrospectivosRESUMO
Cancer cell energy metabolism plays an important role in dictating the efficacy of oncolysis by oncolytic viruses. To understand the role of multiple myeloma metabolism in reovirus oncolysis, we performed semi-targeted mass spectrometry-based metabolomics on 12 multiple myeloma cell lines and revealed a negative correlation between NAD+ levels and susceptibility to oncolysis. Likewise, a negative correlation was observed between the activity of the rate-limiting NAD+ synthesis enzyme NAMPT and oncolysis. Indeed, depletion of NAD+ levels by pharmacological inhibition of NAMPT using FK866 sensitized several myeloma cell lines to reovirus-induced killing. The myelomas that were most sensitive to this combination therapy expressed a functional p53 and had a metabolic and transcriptomic profile favoring mitochondrial metabolism over glycolysis, with the highest synergistic effect in KMS12 cells. Mechanistically, U-13C-labeled glucose flux, extracellular flux analysis, multiplex proteomics, and cell death assays revealed that the reovirus + FK866 combination caused mitochondrial dysfunction and energy depletion, leading to enhanced autophagic cell death in KMS12 cells. Finally, the combination of reovirus and NAD+ depletion achieved greater antitumor effects in KMS12 tumors in vivo and patient-derived CD138+ multiple myeloma cells. These findings identify NAD+ depletion as a potential combinatorial strategy to enhance the efficacy of oncolytic virus-based therapies in multiple myeloma.
RESUMO
Multiple myeloma presents with numerous primary genomic lesions that broadly dichotomize cases into hyperdiploidy or IgH translocated. Clinically, these large alterations are assessed by fluorescence in situ hybridization (FISH) for risk stratification at diagnosis. Secondary focal events, including indels and single-nucleotide variants, are also reported; however, their clinical correlates are poorly described, and FISH has insufficient resolution to assess many of them. This study examined the exonic sequences of 26 genes reported to be mutated in >1% of patients with myeloma using a custom panel. These exons were sequenced to approximately 1000 times in a cohort of 76 patients from Atlantic Canada with detailed clinical correlates and in four multiple myeloma cell lines. Across the 76 patients, 255 mutations and 33 focal copy number variations were identified. High-severity mutations and mutations predicted by FATHMM-XF to be pathogenic identified patients with significantly reduced progression-free survival. These mutations were mutually exclusive from the Revised International Staging System high-risk FISH markers and were independent of all biochemical parameters of the Revised International Staging System. Applying our panel to patients classified by FISH to be standard risk successfully reclassified patients into high- and standard-risk groups. Furthermore, three patients in our cohort each had two high-risk markers; two of these patients developed plasma cell leukemia, a rare and severe clinical sequela of multiple myeloma.
Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Prognóstico , Intervalo Livre de ProgressãoRESUMO
Niemann-Pick Type C (NPC) disease is a fatal, neurodegenerative disorder, caused in most cases by mutations in the late endosomal protein NPC1. A hallmark of NPC disease is endosomal cholesterol accumulation and an impaired cholesterol homeostatic response, which might affect cholesterol transport to mitochondria and, thus, mitochondrial and cellular function. This study aimed to characterize mitochondrial cholesterol homeostasis in NPC disease. Using wild-type and NPC1-deficient Chinese hamster ovary cells, stably transfected with a CYP11A1 complex to assess mitochondrial cholesterol import by pregnenolone production, we show that cholesterol transport to the mitochondrial inner membrane is not affected by loss of NPC1. However, mitochondrial cholesterol content was higher in NPC1-deficient than in wild-type cells. Cholesterol transport to the mitochondrial inner membrane increased markedly upon exposure of cholesterol-deprived cells to lipoproteins, indicating transport of endosomal cholesterol to mitochondria. Reduction of endosomal metastatic lymph node protein 64 (MLN64) by RNA interference decreased cholesterol transport to the mitochondrial inner membrane and reduced mitochondrial cholesterol levels in NPC1-deficient cells, suggesting that MLN64 transported cholesterol to mitochondria even in the absence of NPC1. In summary, this study describes a transport pathway for endosomal cholesterol to mitochondria that requires MLN64, but not NPC1, and that may be responsible for increased mitochondrial cholesterol in NPC disease.
Assuntos
Colesterol/metabolismo , Endossomos/metabolismo , Glicoproteínas de Membrana/deficiência , Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Animais , Transporte Biológico , Células CHO , Proteínas de Transporte , Colesterol/biossíntese , Cricetinae , Cricetulus , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Camundongos , Membranas Mitocondriais/metabolismo , Proteína C1 de Niemann-Pick , Pregnenolona/metabolismoRESUMO
Antibodies targeting CD38, a NAD+-degrading enzyme, have emerged as a promising immunotherapy against multiple myeloma (MM). Currently, the mechanisms by which anti-CD38 antibodies establish their therapeutic effects are poorly understood. Here, we advocate for the depletion of NAD+ to enhance the efficacy of anti-CD38-based immunotherapies in MM.