Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(3): 1086-1100, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288592

RESUMO

PURPOSE: To allow for T1 mapping of the myocardium within 2.3 s for a 2D slice utilizing cardiac motion-corrected, model-based image reconstruction. METHODS: Golden radial data acquisition is continuously carried out for 2.3 s after an inversion pulse. In a first step, dynamic images are reconstructed which show both contrast changes due to T1 recovery and anatomical changes due to the heartbeat. An image registration algorithm with a signal model for T1 recovery is applied to estimate non-rigid cardiac motion. In a second step, estimated motion fields are applied during an iterative model-based T1 reconstruction. The approach was evaluated in numerical simulations, phantom experiments and in in-vivo scans in healthy volunteers. RESULTS: The accuracy of cardiac motion estimation was shown in numerical simulations with an average motion field error of 0.7 ± 0.6 mm for a motion amplitude of 5.1 mm. The accuracy of T1 estimation was demonstrated in phantom experiments, with no significant difference (p = 0.13) in T1 estimated by the proposed approach compared to an inversion-recovery reference method. In vivo, the proposed approach yielded 1.3 × 1.3 mm T1 maps with no significant difference (p = 0.77) in T1 and SDs in comparison to a cardiac-gated approach requiring 16 s scan time (i.e., seven times longer than the proposed approach). Cardiac motion correction improved the precision of T1 maps, shown by a 40% reduced SD. CONCLUSION: We have presented an approach that provides T1 maps of the myocardium in 2.3 s by utilizing both cardiac motion correction and model-based T1 reconstruction.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Miocárdio , Movimento (Física) , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Coração/diagnóstico por imagem , Reprodutibilidade dos Testes
2.
MAGMA ; 36(1): 135-150, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35921020

RESUMO

OBJECTIVE: To provide respiratory motion correction for free-breathing myocardial T1 mapping using a pilot tone (PT) and a continuous golden-angle radial acquisition. MATERIALS AND METHODS: During a 45 s prescan the PT is acquired together with a dynamic sagittal image covering multiple respiratory cycles. From these images, the respiratory heart motion in head-feet and anterior-posterior direction is estimated and two linear models are derived between the PT and heart motion. In the following scan through-plane motion is corrected prospectively with slice tracking based on the PT. In-plane motion is corrected for retrospectively. Our method was evaluated on a motion phantom and 11 healthy subjects. RESULTS: Non-motion corrected measurements using a moving phantom showed T1 errors of 14 ± 4% (p < 0.05) compared to a reference measurement. The proposed motion correction approach reduced this error to 3 ± 4% (p < 0.05). In vivo the respiratory motion led to an overestimation of T1 values by 26 ± 31% compared to breathhold T1 maps, which was successfully corrected to an average difference of 3 ± 2% (p < 0.05) between our free-breathing approach and breathhold data. DISCUSSION: Our proposed PT-based motion correction approach allows for T1 mapping during free-breathing with the same accuracy as a corresponding breathhold T1 mapping scan.


Assuntos
Imageamento por Ressonância Magnética , Miocárdio , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Respiração
3.
IEEE Trans Biomed Eng ; 71(2): 388-399, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37540614

RESUMO

OBJECTIVE: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). METHODS: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a T1-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). RESULTS: Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. CONCLUSION: The proposed method outperforms the reported methods of comparison and yields accurate T1-maps. Although presented for T1-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. SIGNIFICANCE: From a clinical perspective, the obtained T1-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
4.
Phys Med Biol ; 67(24)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36265478

RESUMO

Objective. To provide 3D high-resolution cardiac T1 maps using model-based super-resolution reconstruction (SRR).Approach. Due to signal-to-noise ratio limitations and the motion of the heart during imaging, often 2D T1 maps with only low through-plane resolution (i.e. slice thickness of 6-8 mm) can be obtained. Here, a model-based SRR approach is presented, which combines multiple stacks of 2D acquisitions with 6-8 mm slice thickness and generates 3D high-resolution T1 maps with a slice thickness of 1.5-2 mm. Every stack was acquired in a different breath hold (BH) and any misalignment between BH was corrected retrospectively. The novelty of the proposed approach is the BH correction and the application of model-based SRR on cardiac T1 Mapping. The proposed approach was evaluated in numerical simulations and phantom experiments and demonstrated in four healthy subjects.Main results. Alignment of BH states was essential for SRR even in healthy volunteers. In simulations, respiratory motion could be estimated with an RMS error of 0.18 ± 0.28 mm. SRR improved the visualization of small structures. High accuracy and precision (average standard deviation of 69.62 ms) of the T1 values was ensured by SRR while the detectability of small structures increased by 40%.Significance. The proposed SRR approach provided T1 maps with high in-plane and high through-plane resolution (1.3 × 1.3 × 1.5-2 mm3). The approach led to improvements in the visualization of small structures and precise T1 values.


Assuntos
Ecocardiografia Tridimensional , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA