Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Biol ; 20(7): e3001732, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877684

RESUMO

To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need reliable estimates of their rate of transfer between bacterial cells. Current assays to measure transfer rate are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very small, making estimates that rely on these numbers prone to noise. Here, we take a different approach to estimate plasmid transfer rate, which explicitly embraces this noise. Inspired by the classic fluctuation analysis of Luria and Delbrück, our method is grounded in a stochastic modeling framework. In addition to capturing the random nature of plasmid conjugation, our new methodology, the Luria-Delbrück method ("LDM"), can be used on a diverse set of bacterial systems, including cases for which current approaches are inaccurate. A notable example involves plasmid transfer between different strains or species where the rate that one type of cell donates the plasmid is not equal to the rate at which the other cell type donates. Asymmetry in these rates has the potential to bias or constrain current transfer estimates, thereby limiting our capabilities for estimating transfer in microbial communities. In contrast, the LDM overcomes obstacles of traditional methods by avoiding restrictive assumptions about growth and transfer rates for each population within the assay. Using stochastic simulations and experiments, we show that the LDM has high accuracy and precision for estimation of transfer rates compared to the most widely used methods, which can produce estimates that differ from the LDM estimate by orders of magnitude.


Assuntos
Bactérias , Conjugação Genética , Bactérias/genética , Plasmídeos/genética
2.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37931146

RESUMO

Genes that undergo horizontal gene transfer (HGT) evolve in different genomic backgrounds. Despite the ubiquity of cross-species HGT, the effects of switching hosts on gene evolution remains understudied. Here, we present a framework to examine the evolutionary consequences of host-switching and apply this framework to an antibiotic resistance gene commonly found on conjugative plasmids. Specifically, we determined the adaptive landscape of this gene for a small set of mutationally connected genotypes in 3 enteric species. We uncovered that the landscape topographies were largely aligned with minimal host-dependent mutational effects. By simulating gene evolution over the experimentally gauged landscapes, we found that the adaptive evolution of the mobile gene in one species translated to adaptation in another. By simulating gene evolution over artificial landscapes, we found that sufficient alignment between landscapes ensures such "adaptive equivalency" across species. Thus, given adequate landscape alignment within a bacterial community, vehicles of HGT such as plasmids may enable a distributed form of genetic evolution across community members, where species can "crowdsource" adaptation.


Assuntos
Antibacterianos , Evolução Molecular , Genótipo , Transferência Genética Horizontal , Genômica
3.
PLoS Pathog ; 17(5): e1009528, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970967

RESUMO

Tradeoff theory, which postulates that virulence provides both transmission costs and benefits for pathogens, has become widely adopted by the scientific community. Although theoretical literature exploring virulence-tradeoffs is vast, empirical studies validating various assumptions still remain sparse. In particular, truncation of transmission duration as a cost of virulence has been difficult to quantify with robust controlled in vivo studies. We sought to fill this knowledge gap by investigating how transmission rate and duration were associated with virulence for infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Using host mortality to quantify virulence and viral shedding to quantify transmission, we found that IHNV did not conform to classical tradeoff theory. More virulent genotypes of the virus were found to have longer transmission durations due to lower recovery rates of infected hosts, but the relationship was not saturating as assumed by tradeoff theory. Furthermore, the impact of host mortality on limiting transmission duration was minimal and greatly outweighed by recovery. Transmission rate differences between high and low virulence genotypes were also small and inconsistent. Ultimately, more virulent genotypes were found to have the overall fitness advantage, and there was no apparent constraint on the evolution of increased virulence for IHNV. However, using a mathematical model parameterized with experimental data, it was found that host culling resurrected the virulence tradeoff and provided low virulence genotypes with the advantage. Human-induced or natural culling, as well as host population fragmentation, may be some of the mechanisms by which virulence diversity is maintained in nature. This work highlights the importance of considering non-classical virulence tradeoffs.


Assuntos
Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/virologia , Virulência , Eliminação de Partículas Virais , Animais , Cinética , Oncorhynchus mykiss/crescimento & desenvolvimento , Carga Viral
4.
Nature ; 515(7525): 75-9, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373677

RESUMO

Cooperation is central to the emergence of multicellular life; however, the means by which the earliest collectives (groups of cells) maintained integrity in the face of destructive cheating types is unclear. One idea posits cheats as a primitive germ line in a life cycle that facilitates collective reproduction. Here we describe an experiment in which simple cooperating lineages of bacteria were propagated under a selective regime that rewarded collective-level persistence. Collectives reproduced via life cycles that either embraced, or purged, cheating types. When embraced, the life cycle alternated between phenotypic states. Selection fostered inception of a developmental switch that underpinned the emergence of collectives whose fitness, during the course of evolution, became decoupled from the fitness of constituent cells. Such development and decoupling did not occur when groups reproduced via a cheat-purging regime. Our findings capture key events in the evolution of Darwinian individuality during the transition from single cells to multicellularity.


Assuntos
Evolução Biológica , Fenômenos Fisiológicos Celulares , Aptidão Genética , Estágios do Ciclo de Vida , Modelos Biológicos , Pseudomonas fluorescens/citologia , Pseudomonas fluorescens/fisiologia , Fenótipo , Pseudomonas fluorescens/crescimento & desenvolvimento
5.
Nature ; 494(7438): 463-7, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23395960

RESUMO

The extinction rate of populations is predicted to rise under increasing rates of environmental change. If a population experiencing increasingly stressful conditions lacks appropriate phenotypic plasticity or access to more suitable habitats, then genetic change may be the only way to avoid extinction. Evolutionary rescue from extinction occurs when natural selection enriches a population for more stress-tolerant genetic variants. Some experimental studies have shown that lower rates of environmental change lead to more adapted populations or fewer extinctions. However, there has been little focus on the genetic changes that underlie evolutionary rescue. Here we demonstrate that some evolutionary trajectories are contingent on a lower rate of environmental change. We allowed hundreds of populations of Escherichia coli to evolve under variable rates of increase in concentration of the antibiotic rifampicin. We then genetically engineered all combinations of mutations from isolates evolved under lower rates of environmental change. By assessing fitness of these engineered strains across a range of drug concentrations, we show that certain genotypes are evolutionarily inaccessible under rapid environmental change. Rapidly deteriorating environments not only limit mutational opportunities by lowering population size, but they can also eliminate sets of mutations as evolutionary options. As anthropogenic activities are leading to environmental change at unprecedented rapidity, it is critical to understand how the rate of environmental change affects both demographic and genetic underpinnings of evolutionary rescue.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Mudança Climática , Extinção Biológica , Aptidão Genética/genética , Modelos Biológicos , Mutagênese/genética , Adaptação Fisiológica/efeitos dos fármacos , Antibióticos Antituberculose/farmacologia , Mudança Climática/mortalidade , Mudança Climática/estatística & dados numéricos , Contagem de Colônia Microbiana , Análise Mutacional de DNA , RNA Polimerases Dirigidas por DNA , Relação Dose-Resposta a Droga , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Genes Bacterianos/genética , Aptidão Genética/efeitos dos fármacos , Genótipo , Atividades Humanas , Testes de Sensibilidade Microbiana , Mutagênese/efeitos dos fármacos , Mutação/genética , Densidade Demográfica , Rifampina/farmacologia , Fatores de Tempo
6.
Am Nat ; 192(1): 35-48, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897798

RESUMO

Organisms often modify their environments to their advantage through a process of niche construction. Environments that are improved through positive niche construction can be viewed as a public good. If free riders appear that do not contribute to the shared resource and therefore do not incur any associated costs, the constructed niche may become degraded, resulting in a tragedy of the commons and the extinction of niche constructors. Niche construction can persist if free riders are excluded, for example, if niche constructors monopolize the resource they produce to a sufficient degree. We suggest, however, that the problem of free riders remains because it is possible that nonniche constructors with an enhanced ability to access the resource appear and invade a population of constructors. Using mathematical models we show that positive niche construction can be maintained if it is inextricably linked to a mechanism that makes free riding costly, such as a trait that confers a benefit to only niche constructors. We discuss this finding in terms of genetic interactions and illustrate the principle with a two-locus model. We conclude that positive niche construction can both evolve and be maintained when it has other beneficial effects via pleiotropy. This situation may apply generally to the evolutionary maintenance of cooperation.


Assuntos
Evolução Biológica , Ecossistema , Pleiotropia Genética , Modelos Biológicos
7.
Proc Natl Acad Sci U S A ; 112(24): 7530-5, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25964348

RESUMO

In the context of Wright's adaptive landscape, genetic epistasis can yield a multipeaked or "rugged" topography. In an unstructured population, a lineage with selective access to multiple peaks is expected to fix rapidly on one, which may not be the highest peak. In a spatially structured population, on the other hand, beneficial mutations take longer to spread. This slowdown allows distant parts of the population to explore the landscape semiindependently. Such a population can simultaneously discover multiple peaks, and the genotype at the highest discovered peak is expected to dominate eventually. Thus, structured populations sacrifice initial speed of adaptation for breadth of search. As in the fable of the tortoise and the hare, the structured population (tortoise) starts relatively slow but eventually surpasses the unstructured population (hare) in average fitness. In contrast, on single-peak landscapes that lack epistasis, all uphill paths converge. Given such "smooth" topography, breadth of search is devalued and a structured population only lags behind an unstructured population in average fitness (ultimately converging). Thus, the tortoise-hare pattern is an indicator of ruggedness. After verifying these predictions in simulated populations where ruggedness is manipulable, we explore average fitness in metapopulations of Escherichia coli. Consistent with a rugged landscape topography, we find a tortoise-hare pattern. Further, we find that structured populations accumulate more mutations, suggesting that distant peaks are higher. This approach can be used to unveil landscape topography in other systems, and we discuss its application for antibiotic resistance, engineering problems, and elements of Wright's shifting balance process.


Assuntos
Escherichia coli/genética , Escherichia coli/fisiologia , Evolução Molecular , Modelos Biológicos , Adaptação Biológica , Evolução Molecular Direcionada , Farmacorresistência Bacteriana/genética , Epistasia Genética , Variação Genética , Genoma Bacteriano , Mutação
8.
PLoS Biol ; 12(5): e1001858, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24823361

RESUMO

Reproductive division of labor is a hallmark of multicellular organisms. However, the evolutionary pressures that give rise to delineated germ and somatic cells remain unclear. Here we propose a hypothesis that the mutagenic consequences associated with performing metabolic work favor such differentiation. We present evidence in support of this hypothesis gathered using a computational form of experimental evolution. Our digital organisms begin each experiment as undifferentiated multicellular individuals, and can evolve computational functions that improve their rate of reproduction. When such functions are associated with moderate mutagenic effects, we observe the evolution of reproductive division of labor within our multicellular organisms. Specifically, a fraction of the cells remove themselves from consideration as propagules for multicellular offspring, while simultaneously performing a disproportionately large amount of mutagenic work, and are thus classified as soma. As a consequence, other cells are able to take on the role of germ, remaining quiescent and thus protecting their genetic information. We analyze the lineages of multicellular organisms that successfully differentiate and discover that they display unforeseen evolutionary trajectories: cells first exhibit developmental patterns that concentrate metabolic work into a subset of germ cells (which we call "pseudo-somatic cells") and later evolve to eliminate the reproductive potential of these cells and thus convert them to actual soma. We also demonstrate that the evolution of somatic cells enables phenotypic strategies that are otherwise not easily accessible to undifferentiated organisms, though expression of these new phenotypic traits typically includes negative side effects such as aging.


Assuntos
Linhagem da Célula/genética , Evolução Clonal , Células Germinativas/citologia , Modelos Biológicos , Diferenciação Celular , Divisão Celular , Simulação por Computador , Células Germinativas/crescimento & desenvolvimento , Mutação
9.
PLoS Comput Biol ; 12(12): e1005247, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27973606

RESUMO

Epistatic interactions among genes can give rise to rugged fitness landscapes, in which multiple "peaks" of high-fitness allele combinations are separated by "valleys" of low-fitness genotypes. How populations traverse rugged fitness landscapes is a long-standing question in evolutionary biology. Sexual reproduction may affect how a population moves within a rugged fitness landscape. Sex may generate new high-fitness genotypes by recombination, but it may also destroy high-fitness genotypes by shuffling the genes of a fit parent with a genetically distinct mate, creating low-fitness offspring. Either of these opposing aspects of sex require genotypic diversity in the population. Spatially structured populations may harbor more diversity than well-mixed populations, potentially amplifying both positive and negative effects of sex. On the other hand, spatial structure leads to clumping in which mating is more likely to occur between like types, diminishing the effects of recombination. In this study, we use computer simulations to investigate the combined effects of recombination and spatial structure on adaptation in rugged fitness landscapes. We find that spatially restricted mating and offspring dispersal may allow multiple genotypes inhabiting suboptimal peaks to coexist, and recombination at the "sutures" between the clusters of these genotypes can create genetically novel offspring. Sometimes such an offspring genotype inhabits a new peak on the fitness landscape. In such a case, spatially restricted mating allows this fledgling subpopulation to avoid recombination with distinct genotypes, as mates are more likely to be the same genotype. Such population "centers" can allow nascent peaks to establish despite recombination. Spatial structure may therefore allow an evolving population to enjoy the creative side of sexual recombination while avoiding its destructive side.


Assuntos
Evolução Molecular , Aptidão Genética/genética , Modelos Genéticos , Recombinação Genética/genética , Reprodução/genética , Biologia Computacional , Epistasia Genética , Genótipo
10.
Environ Microbiol ; 18(5): 1415-27, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26287440

RESUMO

Microbes perform many costly biological functions that benefit themselves, and may also benefit neighbouring cells. Losing the ability to perform such functions can be advantageous due to cost savings, but when they are essential for growth, organisms become dependent on ecological partners to compensate for those losses. When multiple functions may be lost, the ecological outcomes are potentially diverse, including independent organisms only; one-way dependency, where one partner performs all functions and others none; or mutual interdependency where partners perform complementary essential functions. What drives these different outcomes? We develop a model where organisms perform 'leaky' functions that provide both private and public benefits to explore the consequences of privatization level, costs and essentiality on influencing these outcomes. We show that mutual interdependency is favoured at intermediate levels of privatization for a broad range of conditions. One-way dependency, in contrast, is only favoured when privatization is low and loss-of-function benefits are accelerating. Our results suggest an interplay between privatization level and shape of benefits from loss in driving microbial dependencies. Given the ubiquity of microbial functions that are inevitably leaked and the ease of mutational inactivation, our findings may help to explain why microbial interdependencies are common in nature.


Assuntos
Interações Microbianas , Metabolismo , Modelos Biológicos
12.
Mol Ecol ; 24(24): 6177-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26547143

RESUMO

Populations of organisms routinely face abiotic selection pressures, and a central goal of evolutionary biology is to understand the mechanistic underpinnings of adaptive phenotypes. Ultraviolet radiation (UVR) is one of earth's most pervasive environmental stressors, potentially damaging DNA in any organism exposed to solar radiation. We explored mechanisms underlying differential survival following UVR exposure in genotypes of the water flea Daphnia melanica derived from natural ponds of differing UVR intensity. The UVR tolerance of a D. melanica genotype from a high-UVR habitat depended on the presence of visible and UV-A light wavelengths necessary for photoenzymatic repair of DNA damage, a repair pathway widely shared across the tree of life. We then measured the acquisition and repair of cyclobutane pyrimidine dimers, the primary form of UVR-caused DNA damage, in D. melanica DNA following experimental UVR exposure. We demonstrate that genotypes from high-UVR habitats repair DNA damage faster than genotypes from low-UVR habitats in the presence of visible and UV-A radiation necessary for photoenzymatic repair, but not in dark treatments. Because differences in repair rate only occurred in the presence of visible and UV-A radiation, we conclude that differing rates of DNA repair, and therefore differential UVR tolerance, are a consequence of variation in photoenzymatic repair efficiency. We then rule out a simple gene expression hypothesis for the molecular basis of differing repair efficiency, as expression of the CPD photolyase gene photorepair did not differ among D. melanica lineages, in both the presence and absence of UVR.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA , Daphnia/genética , Raios Ultravioleta , Animais , Daphnia/efeitos da radiação , Ecossistema , Feminino , Genótipo , Modelos Genéticos , Modelos Estatísticos , Fenótipo , Dímeros de Pirimidina/genética
13.
J Theor Biol ; 380: 123-33, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25983046

RESUMO

Typical mutation-selection models assume well-mixed populations, but dispersal and migration within many natural populations is spatially limited. Such limitations can lead to enhanced variation among locations as different types become clustered in different places. Such clustering weakens competition between unlike types relative to competition between like types; thus, the rate by which a fitter type displaces an inferior competitor can be affected by the spatial scale of movement. In this paper, we use a birth-death model to show that limited migration can affect asexual populations by creating competitive refugia. We use a moment closure approach to show that as population structure is introduced by limiting migration, the equilibrial frequency of deleterious mutants increases. We support and extend the model through stochastic simulation, and we use a spatially explicit cellular automaton approach to corroborate the results. We discuss the implications of these results for standing variation in structured populations and adaptive valley crossing in Wright's "shifting balance" process.


Assuntos
Mutação , Seleção Genética , Modelos Teóricos , Processos Estocásticos
14.
Proc Natl Acad Sci U S A ; 109(34): 13686-91, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22872867

RESUMO

From microbes to humans, the success of many organisms is achieved by dividing tasks among specialized group members. The evolution of such division of labor strategies is an important aspect of the major transitions in evolution. As such, identifying specific evolutionary pressures that give rise to group-level division of labor has become a topic of major interest among biologists. To overcome the challenges associated with studying this topic in natural systems, we use actively evolving populations of digital organisms, which provide a unique perspective on the de novo evolution of division of labor in an open-ended system. We provide experimental results that address a fundamental question regarding these selective pressures: Does the ability to improve group efficiency through the reduction of task-switching costs promote the evolution of division of labor? Our results demonstrate that as task-switching costs rise, groups increasingly evolve division of labor strategies. We analyze the mechanisms by which organisms coordinate their roles and discover strategies with striking biological parallels, including communication, spatial patterning, and task-partitioning behaviors. In many cases, under high task-switching costs, individuals cease to be able to perform tasks in isolation, instead requiring the context of other group members. The simultaneous loss of functionality at a lower level and emergence of new functionality at a higher level indicates that task-switching costs may drive both the evolution of division of labor and also the loss of lower-level autonomy, which are both key components of major transitions in evolution.


Assuntos
Teoria de Sistemas , Trabalho , Animais , Evolução Biológica , Tomada de Decisões , Genoma , Processos Grupais , Humanos , Individualidade , Modelos Biológicos , Especialização
15.
Proc Natl Acad Sci U S A ; 108 Suppl 2: 10831-8, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21690371

RESUMO

It is not immediately clear how costly behavior that benefits others evolves by natural selection. By saving on inherent costs, individuals that do not contribute socially have a selective advantage over altruists if both types receive equal benefits. Restrained consumption of a common resource is a form of altruism. The cost of this kind of prudent behavior is that restrained individuals give up resources to less-restrained individuals. The benefit of restraint is that better resource management may prolong the persistence of the group. One way to dodge the problem of defection is for altruists to interact disproportionately with other altruists. With limited dispersal, restrained individuals persist because of interaction with like types, whereas it is the unrestrained individuals that must face the negative long-term consequences of their rapacity. Here, we study the evolution of restraint in a community of three competitors exhibiting a nontransitive (rock-paper-scissors) relationship. The nontransitivity ensures a form of negative feedback, whereby improvement in growth of one competitor has the counterintuitive consequence of lowering the density of that improved player. This negative feedback generates detrimental long-term consequences for unrestrained growth. Using both computer simulations and evolution experiments with a nontransitive community of Escherichia coli, we find that restrained growth can evolve under conditions of limited dispersal in which negative feedback is present. This research, thus, highlights a set of ecological conditions sufficient for the evolution of one form of altruism.


Assuntos
Simulação por Computador , Escherichia coli/genética , Evolução Molecular , Altruísmo , Seleção Genética
16.
Nature ; 442(7098): 75-8, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16823452

RESUMO

Fragmented populations possess an intriguing duplicity: even if subpopulations are reliably extinction-prone, asynchrony in local extinctions and recolonizations makes global persistence possible. Migration is a double-edged sword in such cases: too little migration prevents recolonization of extinct patches, whereas too much synchronizes subpopulations, raising the likelihood of global extinction. Both edges of this proverbial sword have been explored by manipulating the rate of migration within experimental populations. However, few experiments have examined how the evolutionary ecology of fragmented populations depends on the pattern of migration. Here, we show that the migration pattern affects both coexistence and evolution within a community of bacterial hosts (Escherichia coli) and viral pathogens (T4 coliphage) distributed across a large network of subpopulations. In particular, different patterns of migration select for distinct pathogen strategies, which we term 'rapacious' and 'prudent'. These strategies define a 'tragedy of the commons': rapacious phage displace prudent variants for shared host resources, but prudent phage are more productive when alone. We find that prudent phage dominate when migration is spatially restricted, while rapacious phage evolve under unrestricted migration. Thus, migration pattern alone can determine whether a de novo tragedy of the commons is resolved in favour of restraint.


Assuntos
Bacteriófago T4/fisiologia , Evolução Biológica , Escherichia coli/fisiologia , Escherichia coli/virologia , Movimento , Animais , Bacteriófago T4/patogenicidade , Ecologia , Interações Hospedeiro-Parasita , Modelos Biológicos , Processos Estocásticos
17.
Bioessays ; 32(10): 872-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20726010

RESUMO

The emergence of individuality during the evolutionary transition from single cells to multicellularity poses a range of problems. A key issue is how variation in lower-level individuals generates a corporate (collective) entity with Darwinian characteristics. Of central importance to this process is the evolution of a means of collective reproduction, however, the evolution of a means of collective reproduction is not a trivial issue, requiring careful consideration of mechanistic details. Calling upon observations from experiments, we draw attention to proto-life cycles that emerge via unconventional routes and that transition, in single steps, individuality to higher levels. One such life cycle arises from conflicts among levels of selection and invokes cheats as a primitive germ line: it lays the foundation for collective reproduction, the basis of a self-policing system, the selective environment for the emergence of development, and hints at a plausible origin for a soma/germ line distinction.


Assuntos
Evolução Biológica , Células Germinativas , Reprodução , Seleção Genética , Divisão Celular , Modelos Genéticos
18.
Elife ; 112022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35793223

RESUMO

During the struggle for survival, populations occasionally evolve new functions that give them access to untapped ecological opportunities. Theory suggests that coevolution between species can promote the evolution of such innovations by deforming fitness landscapes in ways that open new adaptive pathways. We directly tested this idea by using high-throughput gene editing-phenotyping technology (MAGE-Seq) to measure the fitness landscape of a virus, bacteriophage λ, as it coevolved with its host, the bacterium Escherichia coli. An analysis of the empirical fitness landscape revealed mutation-by-mutation-by-host-genotype interactions that demonstrate coevolution modified the contours of λ's landscape. Computer simulations of λ's evolution on a static versus shifting fitness landscape showed that the changes in contours increased λ's chances of evolving the ability to use a new host receptor. By coupling sequencing and pairwise competition experiments, we demonstrated that the first mutation λ evolved en route to the innovation would only evolve in the presence of the ancestral host, whereas later steps in λ's evolution required the shift to a resistant host. When time-shift replays of the coevolution experiment were run where host evolution was artificially accelerated, λ did not innovate to use the new receptor. This study provides direct evidence for the role of coevolution in driving evolutionary novelty and provides a quantitative framework for predicting evolution in coevolving ecological communities.


Assuntos
Parasitos , Animais , Evolução Biológica , Escherichia coli/genética , Genótipo , Mutação
19.
Curr Biol ; 18(9): R385-6, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18460319

RESUMO

Optimal foraging theory aims to elucidate strategies that maximize resource intake. Although traditionally used to understand animal foraging behavior, recent evolutionary experiments with viruses offer a new twist on an old idea.


Assuntos
Adaptação Biológica , Bacteriófago T7/genética , Evolução Biológica , Modelos Biológicos , Animais , Bacteriófago T7/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA