RESUMO
Child growth depends on complex factors including diet, nutritional status, socioeconomic, and sanitary conditions, and exposure to environmental chemicals. Lead exposure is known to impair growth in young children but effects in school-age children are less clear. The effects of co-exposure to low-level lead and other toxic metals on child growth are not well understood. We examined cross-sectional associations of blood lead (BLL) with growth indices (Z scores of body mass index for age, BAZ, and height for age, HAZ) in Uruguayan urban school children (n = 259; ~7 y). Potential differences in these associations in children with lower vs. higher urinary inorganic arsenic metabolites (U-As), urinary cadmium (U-Cd), sex (42% girls), iron deficiency (ID, 39% children), or intake of dairy foods below recommended levels were examined. BLL was measured using AAS, U-As using HPLC-HGICP-MS, and U-Cd using ICP-MS. Dietary information was obtained by two 24-h recalls completed by caregivers. Children's linear growth was within age and sex-appropriate reference values. Overweight (BAZ > 1 2 SD) was found in 20.1%, and obesity (BAZ > 2 SD) in 18.5%, of children. Ranges (5th, 95th percentile) of biomarker concentrations were: BLL, 0.8-7.8 µg/dL; U-Cd, 0.01-0.2 µg/L, and U-As, 4.0-27.3 µg/L. BLL was inversely associated with HAZ ([95% CI]: 0.10 [-0.17, -0.03]) in covariate-adjusted models. Although this association was slightly more pronounced in girls, children without ID, and children with lower U-As, there was little evidence of effect modification due to overlapping CIs in stratified models. BLLs were not associated with BAZ, except for a suggestion of a negative relationship in girls (-0.10 [-0.23, 0.02]) but not boys [0.001 [-0.11, 0.12]). Our findings indicate that exposure to low levels of lead was associated with lower HAZ in apparently normally growing urban school children. Larger future studies should help elucidate if these associations persist over time and across populations.
Assuntos
Arsênio , Cádmio , Criança , Pré-Escolar , Estudos Transversais , Laticínios , Exposição Ambiental/análise , Feminino , Humanos , Ferro , Chumbo , Instituições AcadêmicasRESUMO
OBJECTIVES: Lead exposure is associated with children's growth, but this relationship may depend on the presence of susceptibility factors, including genetic variation. Blood lead levels (BLL) differ by ALAD (aminolevulinic acid dehydratase) genotype. We investigated the association between BLL and growth in Mexican first-graders with different ALAD genotypes. METHODS: Children between the ages of 6-8 years (nâ¯=â¯602) attending first grade in schools within the vicinity of a metal foundry in Torreón, Mexico were enrolled into a randomized controlled trial (RCT) testing the efficacy of iron and/or zinc supplementation on blood lead levels (BLL) and cognition. BLL and anthropometry were assessed at baseline (height, height-for-age z-score (HAZ), knee height, head circumference), after 6 (head circumference) and 12 months (height, HAZ, knee height). Children with ALAD1-1 and ALAD1-2/2-2 were compared. The study sample included 538 and 470 participants who had complete data at baseline and follow-up, respectively. Separate multivariable linear regression models adjusted for covariates were used to test the association between BLL at baseline and each anthropometric measure. Covariates included age, sex, hemoglobin, crowding, and maternal education. BLL x ALAD genotype interaction term was tested. RESULTS: Median BLL (10.1⯵g/dL) did not differ by ALAD genotype. After covariate adjustment, baseline BLL was inversely associated with baseline height, HAZ, and knee height. The association (ß [95% CI]) between BLL and baseline height (-0.38[-0.68, -0.09]), HAZ (-0.07[-0.12, -0.02]) and knee height (-0.14[-0.25, -0.02]), was somewhat stronger in children with ALAD1-2/2-2 than ALAD1-1 (-0.09[-0.16, -0.02], -0.02[-0.03, -0.004] and -0.04[-0.06, -0.01], respectively). No associations between BLL and growth at 6 or 12 months were detected irrespective of ALAD genotype. CONCLUSIONS: BLL was adversely associated with anthropometric measures among Mexican children. ALAD genotype may be a susceptibility factor for the effects of lead on child growth.