Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Environ Res ; 234: 116556, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414389

RESUMO

The extremely widespread and ubiquitous nature of plastics, estimated to boost its global production by 26 billion tons till 2050. The large chunks of plastic waste that decomposed down to micro- or nano plastics (MNPs) leads to various ill effects on biological entities. The conventional PET detection methods lack rapid detection of microplastics due to variances in microplastic features, long-drawn-out sample pre-processing procedures and complex instrumentation. Therefore, an instantaneous colorimetric evaluation of microplastic will ensures the simplicity of conducting assays on field. Several nanoparticle-based biosensors that detects proteins, nucleic acids, metabolites operate on either cluster or disperse state of nanoparticle. However, gold nanoparticle (AuNPs) emerges an ideal scaffold for sensory element in lateral flow biosensors due to their simple surface functionalization, unique optoelectronic properties and varied colour spectrum depending on morphologies and aggregation state. In this paper an effort has been made in the form of a hypothesis using in silico tools as a basis to detect polyethylene terephthalate (PET) - most abundant type of microplastic using gold nanoparticle based lateral flow biosensor. We retrieved sequences of PET-binding synthetic peptides and modelled their 3-D structure using I-Tasser server. The best protein model for each peptide sequences are docked with PET monomers - BHET, MHET and other PET polymeric ligands, to evaluate their binding affinities. The synthetic peptide SP 1 (WPAWKTHPILRM) docked with BHET and (MHET)4 exhibits 1.5-fold increases in binding affinity as compared to reference PET anchor peptide Dermaseptin SI (DSI). The GROMACS molecular dynamics simulation studies of synthetic peptide SP 1 - BHET & - (MHET)4 complexes for 50 ns further confirmed the stable binding. RMSF, RMSD, hydrogen bonds, Rg and SASA analysis provides useful structural insights of the SP 1 complexes as compared to reference DSI. Furthermore, SP 1 functionalized AuNP-based colorimetric device was described in detail for detection of PET.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Microplásticos , Plásticos/análise , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Ouro , Colorimetria , Polietileno
2.
Environ Res ; 235: 116573, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437865

RESUMO

Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.


Assuntos
Sistemas CRISPR-Cas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Edição de Genes , Linfócitos T/metabolismo
3.
Lipids Health Dis ; 22(1): 17, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717943

RESUMO

BACKGROUND: Nonalcoholic fatty liver, or NAFLD, is the most common chronic liver ailment. It is characterized by excessive fat deposition in hepatocytes of individuals who consume little or no alcohol and are unaffected by specific liver damaging factors. It is also associated with extrahepatic manifestations such as chronic kidney disease, cardiovascular disease, and sleep apnea. The global burden of NAFLD is increasing at an alarming rate. However, no pharmacologically approved drugs against NAFLD are available owing to their complex pathophysiology. Genome-wide association studies have uncovered SNPs in the fat mass and obesity-associated gene (FTO) that are robustly associated with obesity and higher BMI. The prevalence of NAFLD increases in parallel with the increasing prevalence of obesity. Since FTO might play a crucial role in NAFLD development, the current study identified five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. METHODS: This study aims to identify potentially deleterious nonsynonymous SNPs (ns-SNPs) employing various in silico tools. Additionally, molecular modeling approaches further studied the structural changes caused by identified SNPs. Moreover, molecular dynamics studies finally investigated the binding potentials of the phytochemicals resveratrol, rosmarinic acid, and capsaicin with different mutant forms of FTO. RESULTS: The current investigation has five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. The present study identified five nsSNPs of the human gene FTO, Gly103Asp, Arg96Pro, Tyr295Cys, and Arg322Gln, with an apparent connection to the disease condition. Modulation of demethylation activity by phytomolecule scanning explains the hepatoprotective action of molecules. The current investigation also suggested that predicted mutations did not affect the binding ability of three polyphenols: rosamarinic acid, resveratrol, and capsaicin. CONCLUSION: This study showed that the predicted mutations in FTO did not affect the binding of three polyphenols. Thus, these three molecules can significantly aid drug development against FTO and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Resveratrol/farmacologia , Estudo de Associação Genômica Ampla , Capsaicina/metabolismo , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
4.
Rev Endocr Metab Disord ; 22(2): 421-451, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33052523

RESUMO

About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote ß-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3ß), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Humanos , Inflamassomos/metabolismo , Nanotecnologia , Estresse Oxidativo
5.
Mar Drugs ; 18(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961827

RESUMO

Cancer is at present one of the utmost deadly diseases worldwide. Past efforts in cancer research have focused on natural medicinal products. Over the past decades, a great deal of initiatives was invested towards isolating and identifying new marine metabolites via pharmaceutical companies, and research institutions in general. Secondary marine metabolites are looked at as a favorable source of potentially new pharmaceutically active compounds, having a vast structural diversity and diverse biological activities; therefore, this is an astonishing source of potentially new anticancer therapy. This review contains an extensive critical discussion on the potential of marine microbial compounds and marine microalgae metabolites as anticancer drugs, highlighting their chemical structure and exploring the underlying mechanisms of action. Current limitation, challenges, and future research pathways were also presented.


Assuntos
Antineoplásicos/isolamento & purificação , Cianobactérias/metabolismo , Microalgas/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Metabolismo Secundário
6.
Nanomedicine ; 18: 196-220, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30904587

RESUMO

Emergence of new virus and their heterogeneity are growing at an alarming rate. Sudden outburst of Nipah virus (NiV) has raised serious question about their instant management using conventional medication and diagnostic measures. A coherent strategy with versatility and comprehensive perspective to confront the rising distress could perhaps be effectuated by implementation of nanotechnology. But in concurrent to resourceful and precise execution of nano-based medication, there is an ultimate need of concrete understanding of the NIV pathogenesis. Moreover, to amplify the effectiveness of nano-based approach in a conquest against NiV, a list of developed nanosystem with antiviral activity is also a prerequisite. Therefore the present review provides a meticulous cognizance of cellular and molecular pathogenesis of NiV. Conventional as well several nano-based diagnosis experimentations against viruses have been discussed. Lastly, potential efficacy of different forms of nano-based systems as convenient means to shield mankind against NiV has also been introduced.


Assuntos
Infecções por Henipavirus/virologia , Nanotecnologia/métodos , Vírus Nipah/patogenicidade , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/tratamento farmacológico , Infecções por Henipavirus/patologia , Humanos , Nanopartículas/química , Nanomedicina Teranóstica
7.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597283

RESUMO

A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Inflamação/metabolismo , Doenças Metabólicas/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Biomarcadores , Ensaios Clínicos como Assunto , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Flavonoides/química , Flavonoides/uso terapêutico , Humanos , Inflamação/complicações , Inflamação/diagnóstico , Mediadores da Inflamação/metabolismo , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
8.
Biometals ; 31(2): 161-187, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453655

RESUMO

Minerals or trace elements in small amount are essential nutrients for every plant, but when the internal concentration exceeds the threshold, these essential elements do create phytotoxicity. Plant responses to elemental stresses are very common due to different anthropogenic activities; however it is a complex phenomenon with individual characteristics for various species. To cope up with the situation, a plant produces a group of strategies both in proteomic and genomic level to overcome it. Controlling the metal stress is known to activate a multigene response resulting in the changes in various proteins, which directly affects almost all biological processes in a living cell. Therefore, proteomic and genomic approaches can be useful for elucidating the molecular responses under metal stress. For this, it is tried to provide the latest knowledge and techniques used in proteomic and genomic study during nutritional stress and is represented here in review form.


Assuntos
Genômica/tendências , Estado Nutricional/fisiologia , Proteômica/tendências , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Humanos , Oligoelementos
9.
Artigo em Inglês | MEDLINE | ID: mdl-37622692

RESUMO

Plants from the genus Phoradendron and Viscum, also known as American and European mistletoe, are a group of hemiparasitic plants traditionally used to treat many diseases. Mistletoes have a rich content of natural compounds like terpenes, alkaloids, proteins, and phenolic compounds associated with their potential medicinal properties. In this sense, mistletoes have shown antiproliferative, antioxidant, anti-inflammatory, and antimicrobial activity, which has been attributed to their phytochemical constituents. The mechanisms in which mistletoe plants act vary and depend on their phytochemical content and distribution, which in part will depend on the mistletoe species. In this sense, recent literature research is needed to visualize state of the art in the ethnopharmacological potential of mistletoe. Thus, this literature review aims to systematically report recent studies (2010-2023) on the phytochemical characterization and bioactive studies of mistletoe plants, mainly the Viscum and Phoradendron genera. We gather recent information of 161 references selected in our research. Here we report that although there are several bioactivity studies of mistletoe species, bioavailability studies are still scarce, and the precise mechanisms of action are not fully known. We encourage that further studies include a systematic strategy to cover these areas of opportunity.

10.
RSC Adv ; 13(18): 12411-12429, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091622

RESUMO

To minimize the usage of non-renewable resources and to maintain a sustainable environment, the exploitation of green nanobiopolymers should be enhanced. Biopolymers are generally developed from various microorganisms and plants in the specified condition. This review article discusses the current advances and trends of biopolymers, particularly in the arena of nanotechnology. In addition, discussion on various synthesis steps and structural characterization of green polymer materials like cellulose, chitin, and lignin is also encompassed. This article aims to coordinate the most recent outputs and possible future utilization of nanobiopolymers to the ecosystem with negligible effects by promoting the utilities of polymeric materials like polycaprolactones, starch, and nanocellulose. Additionally, strategic modification of cellulose into nanocellulose via rearrangement of the polymeric compound to serve various industrial and medical purposes has also been highlighted in the review. Specifically, the process of nanoencapsulation and its advancements in terms of nutritional aspects was also presented. The potential utility of green nanobiopolymers is one of the best cost-effective alternatives concerning circular economy and thereby helps to maintain sustainability.

11.
Curr Pharm Biotechnol ; 23(1): 72-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33050862

RESUMO

Nutritional supplementations are a form of nutrition sources that may help in improving the health complexities of a person throughout his or her life span. Being also categorized as food supplementations, nutraceuticals are products that are extracted from edible sources with medical benefits as well as primary nutritional values. Nutraceuticals can be considered as functional foods. There are evidences that nutraceutical supplementations can alter the commensal gut microbiota and help to prevent or fight against chronic non-communicable degenerative diseases in adults, including neurological disorders (Autism Spectrum Disorder [ASD], Parkinson's disease [PD], Multiple sclerosis [MS]) and metabolic disorders (Type-II diabetes, obesity and non-alcoholic fatty liver disease). They can even lessen the complexities of preterm babies like extra-uterine growth restriction, necrotizing enterocolitis, infant eczema and allergy (during pregnancy) as well as bronchopulmonary dysplasia. Molecular perception of inflammatory and apoptotic modulators regulating the pathogenesis of these health risks, their control and management by probiotics and prebiotics could further emphasize the scientific overview of their utility. In this study, the pivotal role of nutraceutical supplementations in regulating or modulating molecular pathways in the above non-communicable diseases is briefly described. This work also gives an overall introduction of the sophisticated genome-editing techniques and advanced delivery systems in therapeutic activities applicable under these health risks.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Probióticos , Adulto , Suplementos Nutricionais , Feminino , Humanos , Recém-Nascido , Masculino , Prebióticos , Gravidez
12.
Biomed Res Int ; 2022: 1682502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103234

RESUMO

Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas de Diagnóstico Molecular , Nanotecnologia/métodos , Humanos , Medicina de Precisão
13.
Environ Sci Pollut Res Int ; 29(53): 80179-80221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36197618

RESUMO

Conservation of biodiversity is critical for the coexistence of humans and the sustenance of other living organisms within the ecosystem. Identification and prioritization of specific regions to be conserved are impossible without proper information about the sites. Advanced monitoring agencies like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) had accredited that the sum total of species that are now threatened with extinction is higher than ever before in the past and are progressing toward extinct at an alarming rate. Besides this, the conceptualized global responses to these crises are still inadequate and entail drastic changes. Therefore, more sophisticated monitoring and conservation techniques are required which can simultaneously cover a larger surface area within a stipulated time frame and gather a large pool of data. Hence, this study is an overview of remote monitoring methods in biodiversity conservation via a survey of evidence-based reviews and related studies, wherein the description of the application of some technology for biodiversity conservation and monitoring is highlighted. Finally, the paper also describes various transformative smart technologies like artificial intelligence (AI) and/or machine learning algorithms for enhanced working efficiency of currently available techniques that will aid remote monitoring methods in biodiversity conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Inteligência Artificial , Biodiversidade , Conservação dos Recursos Naturais/métodos
14.
Eur J Pharm Sci ; 171: 106125, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033697

RESUMO

Vascular endothelial growth factor (VEGF) is considered as one of the vital growth factors for angiogenesis, which is primarily responsible for the progress and maintenance of new vascular network in tumor. Numerous studies report that inhibition of VEGF-induced angiogenesis is a potent technique for cancer suppression. Recently, RNA interference, especially small interfering RNA (siRNA) signified a promising approach to suppress the gene expression. However, the clinical implementation of biological macromolecules such as siRNA is significantly limited because of stability and bioavailability issues. Herein, self-assembled peptide nanospheres have been generated from L,L-cyclic peptides using hydrophobic (Trp), positively charged (Arg) and cysteine (Cys) amino acid residues and demonstrated as vehicles for intracellular delivery of VEGF siRNA and VEGF antisense oligonucleotide. Formation of peptide nanostructures is confirmed by HR-TEM, AFM, SEM and DLS analysis. Possible mechanism of self-assembly of the cyclic peptides and their binding with macromolecules are demonstrated by in-silico analysis. Gel electrophoresis reveals that the newly generated peptide based organic materials exhibit strong binding affinity toward siRNAs / antisense oligonucleotides (ASOs) at optimum concentration. Flow cytometry and confocal microscopy results confirm the efficiency of the new biomaterials toward the intracellular delivery of fluorescent labeled siRNA / ASOs. Furthermore, VEGF expression evaluated by western blot and RT-PCR upon the delivery of functional VEGF siRNA/ASOs suggests that very low concentrations of VEGF siRNA/ASOs cause significant gene knockdown at protein and mRNA levels, respectively.


Assuntos
Nanosferas , Fator A de Crescimento do Endotélio Vascular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Peptídeos Cíclicos , RNA Interferente Pequeno/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Forensic Sci Int ; 317: 110530, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096398

RESUMO

Wildlife trade and fraudulence in food, artefacts and cosmetic industries had raised serious concern in protection of the wild faunal diversity. Lack of proper tools and molecular based techniques for identification of wild species are some of the major constrains faced by the judiciary and law enforcement agencies while framing charges against poachers and illicit agitator. The emergence of wildlife forensics serves as a boon in solving long pending cases of wildlife crimes. Wildlife forensics have proven to be fast, accurate and reliable criminal investigation processes with comprehensive coverage and easy accessibility. It has also helped resolving taxonomic disputes, determining spatiotemporal genetic divergence, evolutionary history, origins and even endemism. Collaboration among inter-disciplinary fields has even led to engineered signature markers and phylogenetics for several species. Development in fields of genetics, molecular and evolutionary biology and other omics techniques have further contributed in accurate identification of species. Wildlife forensics, with the support of proper international mega database units for population reference, will be fundamental in wildlife investigations through its unlimited information sharing ability. The efficient conservation of species will, however, require a collaborative approach consisting of national policy makers, local stakeholders and implementation agencies in addition to experts from the scientific communities.


Assuntos
Animais Selvagens/genética , Conservação dos Recursos Naturais , Crime , Ciências Forenses/métodos , Pelo Animal , Animais , Osso e Ossos/anatomia & histologia , Código de Barras de DNA Taxonômico , Impressões Digitais de DNA , DNA Mitocondrial , Bases de Dados Genéticas , Complexo IV da Cadeia de Transporte de Elétrons , Marcadores Genéticos , Genoma Mitocondrial , Cabelo/anatomia & histologia , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Filogenia , Especificidade da Espécie
16.
Front Nutr ; 7: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850938

RESUMO

Both pectin and pectinase are vitally imperative biomolecules in the biotechnological sector. These molecules are a feasible non-toxic contrivance of nature with extensive applicative perception. Understanding pectic substances and their structure, unique depolymerization, and biochemical properties such as a catalytic mechanism and the strong interrelationship among these molecules could immensely enhance their applicability in industries. For instance, gaining knowledge with respect to the versatile molecular heterogeneity of the compounds could be considered as the center of concern to resolve the industrial issues from multiple aspects. In the present review, an effort has been made to orchestrate the fundamental information related to structure, depolymerization characteristics, and classification of pectin as well as the types and biochemical properties of pectinase. Furthermore, various production methods related to the optimization of the product and its significant contribution to the pharmaceutical industry (either pectinase or derived pectic substances) are described in this article.

17.
Front Microbiol ; 11: 2098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193115

RESUMO

The rapid dissemination of SARS-CoV-2 demonstrates how vulnerable it can make communities and is why it has attained the status of global pandemic. According to the estimation from Worldometer, the SARS-CoV-2 affected cases and deaths are exponentially increasing worldwide, marking the mortality rate as ∼3.8% with no probability of its cessation till now. Despite massive attempts and races among scientific communities in search of proper therapeutic options, the termination of this breakneck outbreak of COVID-19 has still not been made possible. Therefore, this review highlights the diverse molecular events induced by a viral infection, such as autophagy, unfolded protein response (UPR), and inflammasome, illustrating the intracellular cascades regulating viral replication inside the host cell. The SARS-CoV-2-mediated endoplasmic reticulum stress and apoptosis are also emphasized in the review. Additionally, host's immune response associated with SARS-CoV-2 infection, as well as the genetic and epigenetic changes, have been demonstrated, which altogether impart a better understanding of its epidemiology. Considering the drawbacks of available diagnostics and medications, herein we have presented the most sensitive nano-based biosensors for the rapid detection of viral components. Moreover, conceptualizing the viral-induced molecular changes inside its target cells, nano-based antiviral systems have also been proposed in this review.

18.
Environ Sci Pollut Res Int ; 26(4): 4116-4129, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30560532

RESUMO

Zn stress seriously induces various toxic responses in Withania somnifera L., when accumulated above the threshold level which was confirmed by investigating the responses of protein, expression of antioxidant enzymes, and elemental profiling on accumulation of Zn. Zn was supplemented in the form of ZnSO4 (0, 25, 50, 100, and 200 µM) through MS liquid medium and allowed to grow the in vitro germinated plants for 7 and 14 days. The study revealed that when the application of Zn increased, a significant reduction of growth characteristics was noticed with alterations of proteins (both disappearance and de novo synthesis). The activity of CAT, SOD, and GPX were increased up to certain concentrations and then declined, which confirmed through in-gel activity under different treatments. RT-PCR was conducted by taking three sets of genes from CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) and found that gene RsCat from CAT and MnSOD from SOD have shown maximum expression of desired genes under Zn stress, which indicate plant's stress tolerance mechanisms. The proton-induced X-ray emission study confirmed an increasing order of uptake of Zn in plants by suppressing and expressing other elemental constituents which cause metal homeostasis. This study provides insights into molecular mechanisms associated with Zn causing toxicity to plants; however, cellular and subcellular studies are essential to explore molecule-molecule interaction during Zn stress in plants.


Assuntos
Estresse Fisiológico/efeitos dos fármacos , Withania/efeitos dos fármacos , Withania/fisiologia , Zinco/toxicidade , Antioxidantes/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Zinco/farmacocinética
19.
J Microbiol ; 56(5): 287-299, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29721825

RESUMO

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a major health issue of the present era. The bacterium inhabits the host macrophage and other immune cells where it modulates the lysosome trafficking protein, hinders the formation of phagolysosome, and blocks the TNF receptor-dependent apoptosis of host macrophage/monocytes. Other limitations such as resistance to and low bioavailability and bio-distribution of conventional drugs aid to their high virulence and human mortality. This review highlights the use of nanotechnology-based approaches for drug formulation and delivery which could open new avenues to limit the pathogenicity of tuberculosis. Moreover phytochemicals, such as alkaloids, phenols, saponins, steroids, tannins, and terpenoids, extracted from terrestrial plants and mangroves seem promising against M. tuberculosis through different molecular mechanisms. Further understanding of the genomics and proteomics of this pathogenic microbe could also help overcome various research gaps in the path of developing a suitable therapy against tuberculosis.


Assuntos
Nanotecnologia/métodos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Tuberculose/terapia , Acanthaceae/química , Alcaloides/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Avicennia , Genômica , Humanos , Macrófagos/microbiologia , Monócitos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Fenóis/farmacologia , Compostos Fitoquímicos/química , Plantas/química , Proteômica , Saponinas/farmacologia , Esteroides/farmacologia , Taninos/farmacologia
20.
J Food Drug Anal ; 26(3): 927-939, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29976412

RESUMO

Humans are a unique reservoir of heterogeneous and vivacious group of microbes, which together forms the human-microbiome superorganism. Human gut serves as a home to over 100-1000 microbial species, which primarily modulate the host internal environment and thereby, play a major role in host health. This spectacular symbiotic relationship has attracted extensive research in this field. More specifically, these organisms play key roles in defense function, eupepsia along with catabolism and anabolism, and impact brain-gut responses. The emergence of microbiota with resistance and tolerance to existing conventional drugs and antibiotics has decreased the drug efficacies. Furthermore, the modern biotechnology mediated nano-encapsulated multiplex supplements appear to be high cost and inconvenient. Henceforth, a simple, low-cost, receptive and intrinsic approach to achieve health benefits is vital in the present era. Supplementation with probiotics, prebiotics, and synbiotics has shown promising results against various enteric pathogens due to their unique ability to compete with pathogenic microbiota for adhesion sites, to alienate pathogens or to stimulate, modulate and regulate the host's immune response by initiating the activation of specific genes in and outside the host intestinal tract. Probiotics have also been shown to regulate fat storage and stimulate intestinal angiogenesis. Hence, this study aims to underline the possible beneficial impact of probiotics for human health and medical sectors and for better lifestyle.


Assuntos
Probióticos/administração & dosagem , Animais , Diabetes Mellitus/tratamento farmacológico , Microbioma Gastrointestinal , Saúde , Humanos , Neoplasias/tratamento farmacológico , Obesidade/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA