Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 38, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135533

RESUMO

BACKGROUND: Most of the known genes required for developmental processes have been identified by genetic screens in a few well-studied model organisms, which have been considered representative of related species, and informative-to some degree-for human biology. The fruit fly Drosophila melanogaster is a prime model for insect genetics, and while conservation of many gene functions has been observed among bilaterian animals, a plethora of data show evolutionary divergence of gene function among more closely-related groups, such as within the insects. A quantification of conservation versus divergence of gene functions has been missing, without which it is unclear how representative data from model systems actually are. RESULTS: Here, we systematically compare the gene sets required for a number of homologous but divergent developmental processes between fly and beetle in order to quantify the difference of the gene sets. To that end, we expanded our RNAi screen in the red flour beetle Tribolium castaneum to cover more than half of the protein-coding genes. Then we compared the gene sets required for four different developmental processes between beetle and fly. We found that around 50% of the gene functions were identified in the screens of both species while for the rest, phenotypes were revealed only in fly (~ 10%) or beetle (~ 40%) reflecting both technical and biological differences. Accordingly, we were able to annotate novel developmental GO terms for 96 genes studied in this work. With this work, we publish the final dataset for the pupal injection screen of the iBeetle screen reaching a coverage of 87% (13,020 genes). CONCLUSIONS: We conclude that the gene sets required for a homologous process diverge more than widely believed. Hence, the insights gained in flies may be less representative for insects or protostomes than previously thought, and work in complementary model systems is required to gain a comprehensive picture. The RNAi screening resources developed in this project, the expanding transgenic toolkit, and our large-scale functional data make T. castaneum an excellent model system in that endeavor.


Assuntos
Besouros , Tribolium , Animais , Besouros/genética , Drosophila , Drosophila melanogaster/genética , Pupa , Interferência de RNA , Tribolium/genética
2.
Arch Insect Biochem Physiol ; 103(3): e21614, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31498475

RESUMO

Histone acetylation is an evolutionarily conserved epigenetic mechanism of eukaryotic gene regulation which is tightly controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In insects, life-history traits such as longevity and fecundity are severely affected by the suppression of HAT/HDAC activity, which can be achieved by RNA-mediated gene silencing or the application of chemical inhibitors. We used both experimental approaches to investigate the effect of HAT/HDAC inhibition in the pea aphid (Acyrthosiphon pisum) a model insect often used to study complex life-history traits. The silencing of HAT genes (kat6b, kat7, and kat14) promoted survival or increased the number of offspring, whereas targeting rpd3 (HDAC) reduced the number of viviparous offspring but increased the number of premature nymphs, suggesting a role in embryogenesis and eclosion. Specific chemical inhibitors of HATs/HDACs showed a remarkably severe impact on life-history traits, reducing survival, delaying development, and limiting the number of offspring. The selective inhibition of HATs and HDACs also had opposing effects on aphid body weight. The suppression of HAT/HDAC activity in aphids by RNA interference or chemical inhibition revealed similarities and differences compared to the reported role of these enzymes in other insects. Our data suggest that gene expression in A. pisum is regulated by multiple HATs/HDACs, as indicated by the fitness costs triggered by inhibitors that suppress several of these enzymes simultaneously. Targeting multiple HATs or HDACs with combined effects on gene regulation could, therefore, be a promising approach to discover novel targets for the management of aphid pests.


Assuntos
Afídeos/enzimologia , Fertilidade/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/metabolismo , Afídeos/fisiologia , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Longevidade , Processamento de Proteína Pós-Traducional
3.
Biomolecules ; 13(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979386

RESUMO

Thermolabile grape berry proteins such as thaumatin-like proteins (TLPs) and chitinases (CHIs) promote haze formation in bottled wines if not properly fined. As a natural grapevine pest, the spotted-wing fly Drosophila suzukii is a promising source of peptidases that break down grape berry proteins because the larvae develop and feed inside mature berries. Therefore, we produced recombinant TLP and CHI as model thermolabile wine haze proteins and applied a peptidomics strategy to investigate whether D. suzukii larval peptidases were able to digest them under acidic conditions (pH 3.5), which are typically found in winemaking practices. The activity of the novel peptidases was confirmed by mass spectrometry, and cleavage sites within the wine haze proteins were visualized in 3D protein models. The combination of recombinant haze proteins and peptidomics provides a valuable screening tool to identify optimal peptidases suitable for clarification processes in the winemaking industry.


Assuntos
Vitis , Vinho , Animais , Vinho/análise , Drosophila/metabolismo , Larva/metabolismo , Vitis/química , Proteínas de Plantas/metabolismo
4.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298712

RESUMO

Drosophila suzukii (Ds) is an invasive pest insect that causes severe and widespread damage to soft fruit crops. Chemical control based on topical insecticides is inefficient and harmful to consumers and the environment, prompting interest in the development of biological control measures such as insect viruses with narrow host specificity. We previously described a strain of La Jolla virus (LJV) found in moribund Ds specimens in Germany. We demonstrated a pathogenic effect following the intrathoracic injection of LJV into adult Ds flies. However, the development of an effective biocontrol product based on LJV would require the characterization of (1) virulence following oral delivery, particularly in larvae, and (2) stability under different pH and temperature conditions reflecting realistic exposure scenarios. Here we describe the pathogenicity of LJV following oral delivery to Ds adults and larvae. The oral infection of Ds adults with LJV reduced survival in a concentration-dependent manner, whereas the oral infection of Ds larvae caused the arrest of development during pupation. LJV remained stable and infectious following exposure to a broad pH range and different temperatures. We, therefore, demonstrated that LJV is promising as a candidate biological control agent against Ds.


Assuntos
Inseticidas , Vírus de RNA , Animais , Drosophila , Inseticidas/farmacologia , Controle de Insetos , Virulência , Agentes de Controle Biológico/farmacologia , Larva , Frutas , Administração Oral
5.
Insects ; 11(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722463

RESUMO

Insect pests reduce global crop yields by up to 20%, but the most effective control measures are currently based on environmentally hazardous chemical pesticides. An alternative, ecologically beneficial pest-management strategy involves the use of microbial pathogens (or active compounds and extracts derived from them) that naturally target selected insect pests. A novel strain of the bacterium Leuconostoc pseudomesenteroides showed promising activity in our preliminary tests. Here, we investigated its effects in more detail, focusing on drosophilid and aphid pests by testing the survival of two species representing the family Drosophilidae (Drosophila suzukii and D. melanogaster) and one representing the family Aphididae (Acyrthosiphon pisum). We used oral and septic infection models to administer living bacteria or cell-free extracts to adult flies and aphid nymphs. We found that infection with living bacteria significantly reduced the survival of our insect models, whereas the administration of cell-free extracts had a significant effect only in aphids. These results confirm that L. pseudomesenteroides has potential as a new biocontrol agent for sustainable pest management.

6.
Toxins (Basel) ; 11(10)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557881

RESUMO

Ant venoms contain many small, linear peptides, an untapped source of bioactive peptide toxins. The control of agricultural insect pests currently depends primarily on chemical insecticides, but their intensive use damages the environment and human health, and encourages the emergence of resistant pest populations. This has promoted interest in animal venoms as a source of alternative, environmentally-friendly bio-insecticides. We tested the crude venom of the predatory ant, Manica rubida, and observed severe fitness costs in the parthenogenetic pea aphid (Acyrthosiphon pisum), a common agricultural pest. Therefore, we explored the M. rubida venom peptidome and identified a novel decapeptide U-MYRTX-MANr1 (NH2-IDPKVLESLV-CONH2) using a combination of Edman degradation and de novo peptide sequencing. Although this myrmicitoxin was inactive against bacteria and fungi, it reduced aphid survival and reproduction. Furthermore, both crude venom and U-MYRTX-MANr1 reversibly paralyzed injected aphids and induced a loss of body fluids. Components of M. rubida venom may act on various biological targets including ion channels and hemolymph coagulation proteins, as previously shown for other ant venom toxins. The remarkable insecticidal activity of M. rubida venom suggests it may be a promising source of additional bio-insecticide leads.


Assuntos
Venenos de Formiga/análise , Inseticidas/isolamento & purificação , Oligopeptídeos/isolamento & purificação , Sequência de Aminoácidos , Animais , Venenos de Formiga/farmacologia , Afídeos , Inseticidas/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Cicatrização
7.
Insects ; 10(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717163

RESUMO

Ants are a biodiverse group of insects that have evolved toxic venom containing many undiscovered bioactive molecules. In this study, we found that the venom of the ruby ant Myrmica rubra is a rich source of peptides. LC-MS analysis revealed the presence of 142 different peptides varying in molecular weight, sequence length, and hydrophobicity. One of the most abundant peaks was selected for further biochemical and functional characterization. Combined Edman degradation and de novo peptide sequencing revealed the presence of a novel decapeptide (myrmicitoxin) with the amino acid sequence NH2-IDPKLLESLA-CONH2. The decapeptide was named U-MYRTX-MRArub1 and verified against a synthetic standard. The amidated peptide was tested in a synthetic form to determine the antimicrobial activity towards the bacterial pathogens and insecticidal potential against pea aphids (Acyrthosiphon pisum). This peptide did not show antimicrobial activity but it significantly reduced the survival of aphids. It also increased the sensitivity of the aphids to two commonly used chemical insecticides (imidacloprid and methomyl). Since ant venom research is still in its infancy, the findings of this first study on venom peptides derived from M. rubra highlight these insects as an important and rich source for discovery of novel lead structures with potential application in pest control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA