Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Magn Reson Med ; 86(3): 1734-1745, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33934383

RESUMO

PURPOSE: An unmet need in carbon-13 (13 C)-MRI is a transmit system that provides uniform excitation across a large FOV and can accommodate patients of wide-ranging body habitus. Due to the small difference between the resonant frequencies, sodium-23 (23 Na) coil developments can inform 13 C coil design while being simpler to assess due to the higher naturally abundant 23 Na signal. Here we present a removable 23 Na birdcage, which also allows operation as a 13 C abdominal coil. METHODS: We demonstrate a quadrature-driven 4-rung 23 Na birdcage coil of 50 cm in length for both 23 Na and 13 C abdominal imaging. The coil transmit efficiencies and B1+ maps were compared to a linearly driven 13 C Helmholtz-based (clamshell) coil. SNR was investigated with 23 Na and 13 C data using an 8-channel 13 C receive array within the 23 Na birdcage. RESULTS: The 23 Na birdcage longitudinal FOV was > 40 cm, whereas the 13 C clamshell was < 32 cm. The transmit efficiency of the birdcage at the 23 Na frequency was 0.65 µT/sqrt(W), similar to the clamshell for 13 C. However, the coefficient of variation of 23 Na- B1+ was 16%, nearly half that with the 13 C clamshell. The 8-channel 13 C receive array combined with the 23 Na birdcage coil generated a greater than twofold increase in 23 Na-SNR from the central abdomen compared with the birdcage alone. DISCUSSION: This 23 Na birdcage coil has a larger FOV and improved B1+ uniformity when compared to the widely used clamshell coil design while also providing similar transmit efficiency. The coil has the potential to be used for both 23 Na and 13 C imaging.


Assuntos
Imageamento por Ressonância Magnética , Sódio , Abdome , Desenho de Equipamento , Humanos , Imagens de Fantasmas
2.
BMC Musculoskelet Disord ; 22(1): 916, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717593

RESUMO

BACKGROUND: Quantitative magnetic resonance imaging (MRI) methods such as T1rho and T2 mapping are sensitive to changes in tissue composition, however their use in cruciate ligament assessment has been limited to studies of asymptomatic populations or patients with posterior cruciate ligament tears only. The aim of this preliminary study was to compare T1rho and T2 relaxation times of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) between subjects with mild-to-moderate knee osteoarthritis (OA) and healthy controls. METHODS: A single knee of 15 patients with mild-to-moderate knee OA (Kellgren-Lawrence grades 2-3) and of 6 age-matched controls was imaged using a 3.0 T MRI. Three-dimensional (3D) fat-saturated spoiled gradient recalled-echo images were acquired for morphological assessment and T1ρ- and T2-prepared pseudo-steady-state 3D fast spin echo images for compositional assessment of the cruciate ligaments. Manual segmentation of whole ACL and PCL, as well as proximal / middle / distal thirds of both ligaments was carried out by two readers using ITK-SNAP and mean relaxation times were recorded. Variation between thirds of the ligament were assessed using repeated measures ANOVAs and differences in these variations between groups using a Kruskal-Wallis test. Inter- and intra-rater reliability were assessed using intraclass correlation coefficients (ICCs). RESULTS: In OA knees, both T1rho and T2 values were significantly higher in the distal ACL when compared to the rest of the ligament with the greatest differences in T1rho (e.g. distal mean = 54.5 ms, proximal = 47.0 ms, p < 0.001). The variation of T2 values within the PCL was lower in OA knees (OA: distal vs middle vs proximal mean = 28.5 ms vs 29.1 ms vs 28.7 ms, p = 0.748; Control: distal vs middle vs proximal mean = 26.4 ms vs 32.7 ms vs 33.3 ms, p = 0.009). ICCs were excellent for the majority of variables. CONCLUSION: T1rho and T2 mapping of the cruciate ligaments is feasible and reliable. Changes within ligaments associated with OA may not be homogeneous. This study is an important step forward in developing a non-invasive, radiological biomarker to assess the ligaments in diseased human populations in-vivo.


Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem Articular , Ligamento Cruzado Posterior , Ligamento Cruzado Anterior , Estudos Transversais , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ligamento Cruzado Posterior/diagnóstico por imagem , Reprodutibilidade dos Testes
3.
J Magn Reson Imaging ; 52(6): 1753-1764, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677070

RESUMO

BACKGROUND: Determining the compositional response of articular cartilage to dynamic joint-loading using MRI may be a more sensitive assessment of cartilage status than conventional static imaging. However, distinguishing the effects of joint-loading vs. inherent measurement variability remains difficult, as the repeatability of these quantitative methods is often not assessed or reported. PURPOSE: To assess exercise-induced changes in femoral, tibial, and patellar articular cartilage composition and compare these against measurement repeatability. STUDY TYPE: Prospective observational study. POPULATION: Phantom and 19 healthy participants. FIELD STRENGTH/SEQUENCE: 3T; 3D fat-saturated spoiled gradient recalled-echo; T1ρ - and T2 -prepared pseudosteady-state 3D fast spin echo. ASSESSMENT: The intrasessional repeatability of T1ρ and T2 relaxation mapping, with and without knee repositioning between two successive measurements, was determined in 10 knees. T1ρ and T2 relaxation mapping of nine knees was performed before and at multiple timepoints after a 5-minute repeated, joint-loading stepping activity. 3D surface models were created from patellar, femoral, and tibial articular cartilage. STATISTICAL TESTS: Repeatability was assessed using root-mean-squared-CV (RMS-CV). Using Bland-Altman analysis, thresholds defined as the smallest detectable difference (SDD) were determined from the repeatability data with knee repositioning. RESULTS: Without knee repositioning, both surface-averaged T1ρ and T2 were very repeatable on all cartilage surfaces, with RMS-CV <1.1%. Repositioning of the knee had the greatest effect on T1ρ of patellar cartilage with the surface-averaged RMS-CV = 4.8%. While T1ρ showed the greatest response to exercise at the patellofemoral cartilage region, the largest changes in T2 were determined in the lateral femorotibial region. Following thresholding, significant (>SDD) average exercise-induced in T1ρ and T2 of femoral (-8.0% and -5.3%), lateral tibial (-6.9% and -5.9%), medial tibial (+5.8% and +2.9%), and patellar (-7.9% and +2.8%) cartilage were observed. DATA CONCLUSION: Joint-loading with a stepping activity resulted in T1ρ and T2 changes above background measurement error. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1753-1764.


Assuntos
Cartilagem Articular , Cartilagem Articular/diagnóstico por imagem , Humanos , Joelho , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tíbia/diagnóstico por imagem
7.
Eur J Radiol ; 166: 111017, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541181

RESUMO

PURPOSE: To evaluate the impact of a commercially available deep learning-based reconstruction (DLR) algorithm with varying combinations of DLR noise reduction settings and imaging parameters on quantitative and qualitative image quality, PI-RADS classification and examination time in prostate T2-weighted (T2WI) and diffusion-weighted (DWI) imaging. METHOD: Forty patients were included. Standard-of-care (SoC) prostate MRI sequences including T2WI and DWI were reconstructed without and with different DLR de-noising levels (low, medium, high). In addition, faster T2WI(Fast) and DWI(Fast) sequences, and a higher resolution T2WI(HR) sequence were evaluated. Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values. Two radiologists performed qualitative analysis, independently evaluating imaging datasets using 5-point scoring scales for image quality and artifacts. PI-RADS category assignment was also performed by the more experienced radiologist. RESULTS: All DLR levels resulted in significantly higher SNR and CNR compared to the DLR(off) acquisitions. DLR allowed the acquisition time to be reduced by 33% for T2WI(Fast) and 49% for DWI(Fast) compared to SoC, without affecting image quality, whilst T2WI(HR) with DLR allowed for a 73% increase in spatial resolution in the phase encode direction compared to SoC. The inter-reader agreement for image quality and artifact scores was substantial for all subjective measurements on T2WI and DWI. The T2WI(Fast) protocol with DLR(medium) and DWI(Fast) with DLR(low) received the highest qualitative quality score. CONCLUSION: DLR can reduce T2WI and DWI acquisition time and increase SNR and CNR without compromising image quality or altering PI-RADS classification.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos
8.
Comput Med Imaging Graph ; 86: 101793, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075675

RESUMO

Automated semantic segmentation of multiple knee joint tissues is desirable to allow faster and more reliable analysis of large datasets and to enable further downstream processing e.g. automated diagnosis. In this work, we evaluate the use of conditional Generative Adversarial Networks (cGANs) as a robust and potentially improved method for semantic segmentation compared to other extensively used convolutional neural network, such as the U-Net. As cGANs have not yet been widely explored for semantic medical image segmentation, we analysed the effect of training with different objective functions and discriminator receptive field sizes on the segmentation performance of the cGAN. Additionally, we evaluated the possibility of using transfer learning to improve the segmentation accuracy. The networks were trained on i) the SKI10 dataset which comes from the MICCAI grand challenge "Segmentation of Knee Images 2010″, ii) the OAI ZIB dataset containing femoral and tibial bone and cartilage segmentations of the Osteoarthritis Initiative cohort and iii) a small locally acquired dataset (Advanced MRI of Osteoarthritis (AMROA) study) consisting of 3D fat-saturated spoiled gradient recalled-echo knee MRIs with manual segmentations of the femoral, tibial and patellar bone and cartilage, as well as the cruciate ligaments and selected peri-articular muscles. The Sørensen-Dice Similarity Coefficient (DSC), volumetric overlap error (VOE) and average surface distance (ASD) were calculated for segmentation performance evaluation. DSC ≥ 0.95 were achieved for all segmented bone structures, DSC ≥ 0.83 for cartilage and muscle tissues and DSC of ≈0.66 were achieved for cruciate ligament segmentations with both cGAN and U-Net on the in-house AMROA dataset. Reducing the receptive field size of the cGAN discriminator network improved the networks segmentation performance and resulted in segmentation accuracies equivalent to those of the U-Net. Pretraining not only increased segmentation accuracy of a few knee joint tissues of the fine-tuned dataset, but also increased the network's capacity to preserve segmentation capabilities for the pretrained dataset. cGAN machine learning can generate automated semantic maps of multiple tissues within the knee joint which could increase the accuracy and efficiency for evaluating joint health.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Osso e Ossos , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética
9.
Sci Rep ; 10(1): 17563, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067515

RESUMO

Magnetic resonance imaging of the pancreas is increasingly used as an important diagnostic modality for characterisation of pancreatic lesions. Pancreatic MRI protocols are mostly qualitative due to time constraints and motion sensitivity. MR Fingerprinting is an innovative acquisition technique that provides qualitative data and quantitative parameter maps from a single free-breathing acquisition with the potential to reduce exam times. This work investigates the feasibility of MRF parameter mapping for pancreatic imaging in the presence of free-breathing exam. Sixteen healthy participants were prospectively imaged using MRF framework. Regions-of-interest were drawn in multiple solid organs including the pancreas and T1 and T2 values determined. MRF T1 and T2 mapping was performed successfully in all participants (acquisition time:2.4-3.6 min). Mean pancreatic T1 values were 37-43% lower than those of the muscle, spleen, and kidney at both 1.5 and 3.0 T. For these organs, the mean pancreatic T2 values were nearly 40% at 1.5 T and < 12% at 3.0 T. The feasibility of MRF at 1.5 T and 3 T was demonstrated in the pancreas. By enabling fast and free-breathing quantitation, MRF has the potential to add value during the clinical characterisation and grading of pathological conditions, such as pancreatitis or cancer.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Pâncreas/diagnóstico por imagem , Respiração , Adulto , Algoritmos , Feminino , Humanos , Masculino , Movimento (Física) , Reconhecimento Automatizado de Padrão , Imagens de Fantasmas , Estudos Prospectivos
10.
IEEE Trans Radiat Plasma Med Sci ; 3(4): 509-515, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32066996

RESUMO

Multiparametric magnetic resonance imaging (MRI) can be used to characterize many cancer subtypes including ovarian cancer. Quantitative mapping of MRI relaxation values, such as T 1 and T 2 mapping, is promising for improving tumor assessment beyond conventional qualitative T 1- and T 2-weighted images. However, quantitative MRI relaxation mapping methods often involve long scan times due to sequentially measuring many parameters. Magnetic resonance fingerprinting (MRF) is a new method that enables fast quantitative MRI by exploiting the transient signals caused by the variation of pseudorandom sequence parameters. These transient signals are then matched to a simulated dictionary of T 1 and T 2 values to create quantitative maps. The ability of MRF to simultaneously measure multiple parameters, could represent a new approach to characterizing cancer and assessing treatment response. This feasibility study investigates MRF for simultaneous T 1, T 2, and relative proton density (rPD) mapping using ovarian cancer as a model system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA