Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 49(1): 234-245, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33978829

RESUMO

PURPOSE: Calcineurin inhibitors (CNI) can cause long-term impairment of brain function. Possible pathomechanisms include alterations of the cerebral immune system. This study used positron emission tomography (PET) imaging with the translocator protein (TSPO) ligand 18F-GE-180 to evaluate microglial activation in liver-transplanted patients under different regimens of immunosuppression. METHODS: PET was performed in 22 liver-transplanted patients (3 CNI free, 9 with low-dose CNI, 10 with standard-dose CNI immunosuppression) and 9 healthy controls. The total distribution volume (VT) estimated in 12 volumes-of-interest was analyzed regarding TSPO genotype, CNI therapy, and cognitive performance. RESULTS: In controls, VT was about 80% higher in high affinity binders (n = 5) compared to mixed affinity binders (n = 3). Mean VT corrected for TSPO genotype was significantly lower in patients compared to controls, especially in patients in whom CNI dose had been reduced because of nephrotoxic side effect. CONCLUSION: Our results provide evidence of chronic suppression of microglial activity in liver-transplanted patients under CNI therapy especially in patients with high sensitivity to CNI toxicity.


Assuntos
Transplante de Fígado , Microglia , Encéfalo/metabolismo , Humanos , Terapia de Imunossupressão/efeitos adversos , Microglia/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 47(12): 2887-2900, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32322915

RESUMO

PURPOSE: Tracer kinetic modeling of tissue time activity curves and the individual input function based on arterial blood sampling and metabolite correction is the gold standard for quantitative characterization of microglia activation by PET with the translocator protein (TSPO) ligand 18F-GE-180. This study tested simplified methods for quantification of 18F-GE-180 PET. METHODS: Dynamic 18F-GE-180 PET with arterial blood sampling and metabolite correction was performed in five healthy volunteers and 20 liver-transplanted patients. Population-based input function templates were generated by averaging individual input functions normalized to the total area under the input function using a leave-one-out approach. Individual population-based input functions were obtained by scaling the input function template with the individual parent activity concentration of 18F-GE-180 in arterial plasma in a blood sample drawn at 27.5 min or by the individual administered tracer activity, respectively. The total 18F-GE-180 distribution volume (VT) was estimated in 12 regions-of-interest (ROIs) by the invasive Logan plot using the measured or the population-based input functions. Late ROI-to-whole-blood and ROI-to-cerebellum ratio were also computed. RESULTS: Correlation with the reference VT (with individually measured input function) was very high for VT with the population-based input function scaled with the blood sample and for the ROI-to-whole-blood ratio (Pearson correlation coefficient = 0.989 ± 0.006 and 0.970 ± 0.005). The correlation was only moderate for VT with the population-based input function scaled with tracer activity dose and for the ROI-to-cerebellum ratio (0.653 ± 0.074 and 0.384 ± 0.177). Reference VT, population-based VT with scaling by the blood sample, and ROI-to-whole-blood ratio were sensitive to the TSPO gene polymorphism. Population-based VT with scaling to the administered tracer activity and the ROI-to-cerebellum ratio failed to detect a polymorphism effect. CONCLUSION: These results support the use of a population-based input function scaled with a single blood sample or the ROI-to-whole-blood ratio at a late time point for simplified quantitative analysis of 18F-GE-180 PET.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Carbazóis , Humanos , Receptores de GABA/metabolismo , Reprodutibilidade dos Testes
3.
Front Neurosci ; 14: 787, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848560

RESUMO

Cochlear implantation constitutes a successful therapy of inner ear deafness, with the majority of patients showing good outcomes. There is, however, still some unexplained variability in outcomes with a number of cochlear-implant (CI) users, showing major limitations in speech comprehension. The current study used a multimodal diagnostic approach combining single-photon emission computed tomography (SPECT) and electroencephalography (EEG) to examine the mechanisms underlying speech processing in postlingually deafened CI users (N = 21). In one session, the participants performed a speech discrimination task, during which a 96-channel EEG was recorded and the perfusions marker 99mTc-HMPAO was injected intravenously. The SPECT scan was acquired 1.5 h after injection to measure the cortical activity during the speech task. The second session included a SPECT scan after injection without stimulation at rest. Analysis of EEG and SPECT data showed N400 and P600 event-related potentials (ERPs) particularly evoked by semantic violations in the sentences, and enhanced perfusion in a temporo-frontal network during task compared to rest, involving the auditory cortex bilaterally and Broca's area. Moreover, higher performance in testing for word recognition and verbal intelligence strongly correlated to the activation in this network during the speech task. However, comparing CI users with lower and higher speech intelligibility [median split with cutoff + 7.6 dB signal-to-noise ratio (SNR) in the Göttinger sentence test] revealed for CI users with higher performance additional activations of parietal and occipital regions and for those with lower performance stronger activation of superior frontal areas. Furthermore, SPECT activity was tightly coupled with EEG and cognitive abilities, as indicated by correlations between (1) cortical activation and the amplitudes in EEG, N400 (temporal and occipital areas)/P600 (parietal and occipital areas) and (2) between cortical activation in left-sided temporal and bilateral occipital/parietal areas and working memory capacity. These results suggest the recruitment of a temporo-frontal network in CI users during speech processing and a close connection between ERP effects and cortical activation in CI users. The observed differences in speech-evoked cortical activation patterns for CI users with higher and lower speech intelligibility suggest distinct processing strategies during speech rehabilitation with CI.

4.
PLoS One ; 13(10): e0205044, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278068

RESUMO

Activation studies with positron emission tomography (PET) in auditory implant users explained some of the mechanisms underlying the variability of achieved speech comprehension. Since future developments of auditory implants will include studies in rodents, we aimed to inversely translate functional PET imaging to rats. In normal hearing rats, activity in auditory and non-auditory regions was studied using 18F-fluorodeoxyglucose (18F-FDG) PET with 3 different acoustic conditions: sound attenuated laboratory background, continuous white noise and rippled noise. Additionally, bilateral cochlea ablated animals were scanned. 3D image data were transferred into a stereotaxic standard space and evaluated using volume of interest (VOI) analyses and statistical parametric mapping (SPM). In normal hearing rats alongside the auditory pathway consistent activations of the nucleus cochlearis (NC), olivary complex (OC) and inferior colliculus (IC) were seen comparing stimuli with background. In this respect, no increased activation could be detected in the auditory cortex (AC), which even showed deactivation with white noise stimulation. Nevertheless, higher activity in the AC in normal hearing rats was observed for all 3 auditory conditions against the cochlea ablated status. Vice versa, in ablated status activity in the olfactory nucleus (ON) was higher compared to all auditory conditions in normal hearing rats. Our results indicate that activations can be demonstrated in normal hearing animals based on 18F-FDG PET in nuclei along the central auditory pathway with different types of noise stimuli. However, in the AC missing activation with respect to the background advises the need for more rigorous background noise attenuation for non-invasive reference conditions. Finally, our data suggest cross-modal activation of the olfactory system following cochlea ablation-underlining, that 18F-FDG PET appears to be well suited to study plasticity in rat models for cochlear implantation.


Assuntos
Técnicas de Ablação , Estimulação Acústica , Vias Auditivas/diagnóstico por imagem , Vias Auditivas/fisiologia , Cóclea/cirurgia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Feminino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA