Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(7): 2187-2205, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36946067

RESUMO

PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is a variably present gene that benefits crown root growth and phosphorus (P) sufficiency in rice (Oryza sativa). To explore the ecophysiological importance of this gene, we performed a biogeographic survey of landraces and cultivars, confirming that functional OsPSTOL1 alleles prevail in low nutrient and drought-prone rainfed ecosystems, whereas loss-of-function and absence haplotypes predominate in control-irrigated paddy varieties of east Asia. An evolutionary history analysis of OsPSTOL1 and related genes in cereal, determined it and other genes are kinase-only domain derivatives of membrane-associated receptor like kinases. Finally, to evaluate the potential value of this kinase of unknown function in another Gramineae, wheat (Triticum aestivum) lines overexpressing OsPSTOL1 were evaluated under field and controlled low P conditions. OsPSTOL1 enhances growth, crown root number, and overall root plasticity under low P in wheat. Survey of root and shoot crown transcriptomes at two developmental stages identifies transcription factors that are differentially regulated in OsPSTOL1 wheat that are similarly controlled by the gene in rice. In wheat, OsPSTOL1 alters the timing and amplitude of regulators of root development in dry soils and hastens induction of the core P-starvation response. OsPSTOL1 and related genes may aid more sustainable cultivation of cereal crops.


Assuntos
Oryza , Oryza/genética , Triticum/fisiologia , Fósforo , Ecossistema , Grão Comestível , Fosfatos , Raízes de Plantas
2.
Nat Plants ; 6(6): 675-685, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32483330

RESUMO

Gene transcription is counterbalanced by messenger RNA decay processes that regulate transcript quality and quantity. We show here that the evolutionarily conserved DHH1/DDX6-like RNA hellicases of Arabidopsis thaliana control the ephemerality of a subset of cellular mRNAs. These RNA helicases co-localize with key markers of processing bodies and stress granules and contribute to their subcellular dynamics. They function to limit the precocious accumulation and ribosome association of stress-responsive mRNAs involved in auto-immunity and growth inhibition under non-stress conditions. Given the conservation of this RNA helicase subfamily, they may control basal levels of conditionally regulated mRNAs in diverse eukaryotes, accelerating responses without penalty.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , RNA Helicases DEAD-box/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA