RESUMO
Soil microbial transformation of nitrogen (N) in nutrient-limited native C4 grasslands can be affected by N fertilization rate and C4 grass species. Here, we report in situ dynamics of the population size (gene copy abundances) and activity (transcript copy abundances) of five functional genes involved in soil N cycling (nifH, bacterial amoA, nirK, nirS, and nosZ) in a field experiment with two C4 grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) under three N fertilization rates (0, 67, and 202 kg N ha-1). Diazotroph (nifH) abundance and activity were not affected by N fertilization rate nor grass species. However, moderate and high N fertilization promoted population size and activity of ammonia oxidizing bacteria (AOB, quantified via amoA genes and transcripts) and nitrification potential. Moderate N fertilization increased abundances of nitrite-reducing bacterial genes (nirK and nirS) under switchgrass but decreased these genes under big bluestem. The activity of nitrous oxide reducing bacteria (nosZ transcripts) was also promoted by moderate N fertilization. In general, high N fertilization had a negative effect on N-cycling populations compared to moderate N addition. Compared to big bluestem, the soils planted with switchgrass had a greater population size of AOB and nitrite reducers. The significant interaction effects of sampling season, grass species, and N fertilization rate on N-cycling microbial community at genetic-level rather than transcriptional-level suggested the activity of N-cycling microbial communities may be driven by more complex environmental factors in native C4 grass systems, such as climatic and edaphic factors.
Assuntos
Pradaria , Ureia , Poaceae , Nitritos , Bactérias/genética , Solo , Nitrogênio/farmacologia , FertilizaçãoRESUMO
Understanding how livestock grazing strategies of native warm season grasses (NWSG) can impact facultative grassland bird nesting can provide insight for conservation efforts. We compared pre and post treatment effects of rotational grazing (ROT) and patch-burn grazing (PBG) for facultative grassland bird species nest success and nest-site selection on NWSG pastures at three Mid-South research sites. We established 14, 9.7 ha NWSG pastures and randomly assigned each to either ROT or PBG and monitored avian nest-site selection and nest success, 2014-2016. We collected nesting and vegetation data in 2014, before treatment implementation, as an experimental pre-treatment. We implemented treatments across all research sites in spring 2015. We used a step-wise model selection framework to estimate treatment effect for ROT or PBG on avian nest daily survival rate (DSR) and resource selection function (RSF) at the temporal scale and within-field variables. Daily survival rates were 0.93% (SE = 0.006) for field sparrow (Spizella pusilla), 0.96% (SE = 0.008) for red-winged blackbird (Agelaius phoeniceus), and 0.92% (SE = 0.01) for indigo bunting (Passerina cyanea). Model support for PBG treatment and vegetation height were indicated as negative and positive influences for field sparrow DSR, respectively. Red-winged blackbirds' DSR were negatively influenced by ROT while vegetation height positively affected DSR, and DSR for indigo bunting did not differ among treatments. Combined RSF models indicated nest-site selection for all species was positively related to vegetation height and only weakly associated with other within-field variables. We provide evidence that ROT and/or PBG effects vary by species for DSR for these three facultative grassland birds, and vegetation characteristics affected their nest-site selection in the Mid-South USA. A lack of disturbance in Mid-South grasslands can lead to higher successional stages (i.e., mix shrub-grassland), but some combination of ROT, PBG, and unburned/ungrazed areas can provide adequate nesting habitat on small pasture lands (â¼1.8 -7.8 ha) for various facultative grassland birds and potentially offer the opportunity to simultaneously maintain livestock production and grassland bird nesting habitat.
Assuntos
Passeriformes , Aves Canoras , Animais , Pradaria , Índigo Carmim , Ecossistema , Poaceae , GadoRESUMO
Native C4 grasses have become the preferred species for native perennial pastures and bioenergy production due to their high productivity under low soil nitrogen (N) status. One reason for their low N requirement is that C4 grasses may benefit from soil diazotrophs and promote biological N fixation. Our objective was to evaluate the impact of N fertilization rates (0, 67, and 202 kg N ha-1) and grass species (switchgrass [Panicum virgatum] and big bluestem [Andropogon gerardii]) on the abundance, activity, diversity, and community composition of soil diazotrophs over three agricultural seasons (grass green-up, initial harvest, and second harvest) in a field experiment in East Tennessee, United States. Nitrogen fertilization rate had a stronger influence on diazotroph population size and activity (determined by nifH gene and transcript abundances) and community composition (determined by nifH gene amplicon sequencing) than agricultural season or grass species. Excessive fertilization (202 kg N ha-1) resulted in fewer nifH transcripts compared to moderate fertilization (67 kg N ha-1) and decreased both richness and evenness of diazotrophic community, reflecting an inhibitory effect of high N application rates on soil diazotrophic community. Overall, cluster I and cluster III diazotrophs were dominant in this native C4 grass system. Diazotroph population size and activity were directly related to soil water content (SWC) based on structural equation modeling. Soil pH, SWC, and C and N availability were related to the variability of diazotrophic community composition. Our results revealed relationships between soil diazotrophic community and associated soil properties, adding to our understanding of the response of soil diazotrophs to N fertilization and grass species in native C4 grass systems.
RESUMO
BACKGROUND: Fertilizer addition can contribute to nitrogen (N) losses from soil by affecting microbial populations responsible for nitrification. However, the effects of N fertilization on ammonia oxidizing bacteria under C4 perennial grasses in nutrient-poor grasslands are not well studied. METHODS: In this study, a field experiment was used to assess the effects of N fertilization rate (0, 67, and 202 kg N ha-1) and grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) on ammonia-oxidizing bacterial (AOB) communities in C4 grassland soils using quantitative PCR, quantitative reverse transcription-PCR, and high-throughput amplicon sequencing of amoA genes. RESULTS: Nitrosospira were dominant AOB in the C4 grassland soil throughout the growing season. N fertilization rate had a stronger influence on AOB community composition than C4 grass species. Elevated N fertilizer application increased the abundance, activity, and alpha-diversity of AOB communities as well as nitrification potential, nitrous oxide (N2O) emission and soil acidity. The abundance and species richness of AOB were higher under switchgrass compared to big bluestem. Soil pH, nitrate, nitrification potential, and N2O emission were significantly related to the variability in AOB community structures (p < 0.05).
RESUMO
Avian monitoring strategies are usually linked to bird singing or calling behavior. Individual availability for detection can change as a result of conspecific factors affecting bird behavior, though the magnitude of these effects is difficult to quantify. We evaluated behavioral and temporal factors affecting Northern Bobwhite (Colinus virginianus) breeding season individual availability for detection during three common survey times (3 min, 5 min, 10 min). We conducted 10-minute surveys associated with radio-collared male Northern Bobwhites on Peabody Wildlife Management Area, Kentucky, from 2010-2011. We homed to within 50 m of radio-collared males and recorded number of distinct Northern Bobwhite whistles (singing rate) per 1-minute interval, number of other males calling during the survey, minutes-since-sunrise, and day-of-season. We also recorded the number of minutes during a 10-minute survey that radio-collared male Northern Bobwhites called. We used logistic regression to estimate availability of radio-collared individuals for 3-minute, 5-minute, and 10-minute surveys. We also modeled number of minutes during 10-minute surveys that radio-collared Northern Bobwhites called, and we modeled singing rate. Individual availability for detection of radio-collared individuals during a 10-minute survey increased by 100% when at least 1 other Northern Bobwhite called during a survey (6.5% to 13.1%) and by 626% when 6 other Northern Bobwhites were calling (6.5% to 47.6%). Individual availability was 30% greater for 10-minute surveys than 5-minute surveys or 55% greater for 10-minute surveys than 3-minute surveys. Northern Bobwhite called most (2.8 ± 0.66 minutes/10-min survey) and at a greater rate (11.8 ± 1.3 calls/10-min period) when at least 5 other Northern Bobwhites called. Practitioners risk biasing population estimates low if individual availability is unaccounted for because species with low populations will not be stimulated by other calling males, are less likely to call, call less frequently, and call fewer times per minute, reducing their individual availability and likelihood to be counted on a survey even when they are present.
Assuntos
Colinus , Monitoramento Ambiental/métodos , Comunicação Animal , Animais , Masculino , Densidade DemográficaRESUMO
Forest cover in the eastern United States has increased over the past century and while some late-successional species have benefited from this process as expected, others have experienced population declines. These declines may be in part related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining late-successional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in order to attract individuals into areas where current structure is inappropriate, and limiting anthropogenic disturbance in forests that already possess appropriate structural attributes in order to maintain maximum productivity.