Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 324(1): F75-F90, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454702

RESUMO

Induction of SRY box transcription factor 9 (SOX9) has been shown to occur in response to kidney injury in rodents, where SOX9-positive cells proliferate and regenerate the proximal tubules of injured kidneys. Additionally, SOX9-positive cells demonstrate a capacity to differentiate toward other nephron segments. Here, we characterized the role of SOX9 in normal and injured human kidneys. SOX9 expression was found to colocalize with a proportion of so-called scattered tubular cells in the uninjured kidney, a cell population previously shown to be involved in kidney injury and regeneration. Following injury and in areas adjacent to inflammatory cell infiltrates, SOX9-positive cells were increased in number. With the use of primary tubular epithelial cells (PTECs) obtained from human kidney tissue, SOX9 expression was spontaneously induced in culture and further increased by transforming growth factor-ß1, whereas it was suppressed by interferon-γ. siRNA-mediated knockdown of SOX9 in PTECs followed by analysis of differential gene expression, immunohistochemical expression, and luciferase promoter assays suggested lamin B receptor (LBR), high mobility group AT-hook 2 (HMGA2), and homeodomain interacting protein kinase 3 (HIPK3) as possible target genes of SOX9. Moreover, a kidney explant model was used to demonstrate that only SOX9-positive cells survive the massive injury associated with kidney ischemia and that the surviving SOX9-positive cells spread and repopulate the tubules. Using a wound healing assay, we also showed that SOX9 positively regulated the migratory capacity of PTECs. These findings shed light on the functional and regulatory aspects of SOX9 activation in the human kidney during injury and regeneration.NEW & NOTEWORTHY Recent studies using murine models have shown that SRY box transcription factor 9 (SOX9) is activated during repair of renal tubular cells. In this study, we showed that SOX9-positive cells represent a proportion of scattered tubular cells found in the uninjured human kidney. Furthermore, we suggest that expression of LBR, HMGA2, and HIPK3 is altered by SOX9 in the kidney tubular epithelium, suggesting the involvement of these gene products in kidney injury and regeneration.


Assuntos
Rim , Receptores Citoplasmáticos e Nucleares , Humanos , Camundongos , Animais , Rim/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Túbulos Renais Proximais/metabolismo , Fatores de Transcrição/metabolismo , Túbulos Renais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição SOX9/metabolismo , Receptor de Lamina B
2.
Front Cardiovasc Med ; 11: 1357315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39041002

RESUMO

Creation of disease models utilizing hiPSCs in combination with CRISPR/Cas9 gene editing enable mechanistic insights into differential pharmacological responses. This allows translation of efficacy and safety findings from a healthy to a diseased state and provides a means to predict clinical outcome sooner during drug discovery. Calcium handling disturbances including reduced expression levels of the type 2 ryanodine receptor (RYR2) are linked to cardiac dysfunction; here we have created a RYR2 deficient human cardiomyocyte model that mimics some aspects of heart failure. RYR2 deficient cardiomyocytes show differential pharmacological responses to L-type channel calcium inhibitors. Phenotypic and proteomic characterization reveal novel molecular insights with altered expression of structural proteins including CSRP3, SLMAP, and metabolic changes including upregulation of the pentose phosphate pathway and increased sensitivity to redox alterations. This genetically engineered in vitro cardiovascular model of RYR2 deficiency supports the study of pharmacological responses in the context of calcium handling and metabolic dysfunction enabling translation of drug responses from healthy to perturbed cellular states.

3.
PLoS One ; 18(1): e0280270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649229

RESUMO

The podocyte is a specialized cell type critically involved in maintaining the selective filtration barrier of the kidney. Podocytes are primary or secondary targets for a multitude of kidney diseases. Despite intense investigation, the transcriptome and proteome of human podocytes remain incompletely characterized. Here, we analyzed publicly available RNA-Seq data from human kidneys (n = 85) to computationally identify potential novel podocyte markers. For confirmation, we used an online histology resource followed by in-house staining of human kidneys and biochemical fractionation of glomeruli. Initial characterization of the novel podocyte transcripts was performed using viral overexpression and mRNA silencing. Several previously unrecognized gene products were identified that correlated to established podocyte markers on the RNA level and that were histologically localized to podocytes. ARMH4 (a.k.a. UT2 or C14orf37) and WIPF3 (a.k.a CR16) were among the hits. We show that these transcripts increase in response to overexpression of the podocyte transcription factor LMX1B. Overexpression of ARMH4 from low endogenous levels in primary kidney epithelial cells reduced the release of the inflammatory mediators IL-1B and IL-8 (CXCL8). The opposite effect was seen in mature human podocytes when ARMH4 was silenced. Overexpression of WIPF3 stabilized N-WASP, known to be required for maintenance of podocyte foot processes, and increased cell motility as shown using a scratch assay. Moreover, data from normal and diseased human kidneys showed that ARMH4 was downregulated in glomerular pathologies, while WIPF3 remained constantly expressed. ARMH4 and WIPF3 are new potential markers of human podocytes, where they may modulate inflammatory insults by controlling cytokine release and contribute to cytoskeletal dynamics, respectively.


Assuntos
Nefropatias , Proteínas dos Microfilamentos , Podócitos , Humanos , Imunomodulação , Rim/patologia , Nefropatias/patologia , Glomérulos Renais/patologia , Podócitos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas dos Microfilamentos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA