Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(2): 1422-1442, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36826038

RESUMO

Many biological activities of pyridine and thiazole derivatives have been reported, including antiviral activity and, more recently, as COVID-19 inhibitors. Thus, in this paper, we designed, synthesized, and characterized a novel series of N-aminothiazole-hydrazineethyl-pyridines, beginning with a N'-(1-(pyridine-3-yl)ethylidene)hydrazinecarbothiohydrazide derivative and various hydrazonoyl chlorides and phenacyl bromides. Their Schiff bases were prepared from the condensation of N-aminothiazole derivatives with 4-methoxybenzaldehyde. FTIR, MS, NMR, and elemental studies were used to identify new products. The binding energy for non-bonding interactions between the ligand (studied compounds) and receptor was determined using molecular docking against the SARS-CoV-2 main protease (PDB code: 6LU7). Finally, the best docked pose with highest binding energy (8a = -8.6 kcal/mol) was selected for further molecular dynamics (MD) simulation studies to verify the outcomes and comprehend the thermodynamic properties of the binding. Through additional in vitro and in vivo research on the newly synthesized chemicals, it is envisaged that the achieved results will represent a significant advancement in the fight against COVID-19.

2.
J Enzyme Inhib Med Chem ; 38(1): 2199950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37080775

RESUMO

Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 µg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.


Assuntos
Acanthaceae , Lignanas , Trypanosoma brucei brucei , Simulação de Acoplamento Molecular , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Mol Pharm ; 16(5): 1890-1905, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848917

RESUMO

Oral administration of a solid dosage form requires drug dissolution in the gastrointestinal tract before absorption. Solubility is a key factor controlling dissolution, and it is recognized that, within the intestinal tract, this is influenced by the luminal fluid pH, amphiphile content, and composition. Various simulated intestinal fluid recipes have been introduced to mimic this behavior and studied using a range of different experimental techniques. In this article, we have measured equilibrium solubility utilizing a novel four component mixture design (4CMD) with biorelevant amphiphiles (bile salt, phospholipid, oleate, and monoglyceride) within a matrix of three pH values (5, 6, and 7) and total amphiphile concentrations (11.7, 30.6, and 77.5 mM) to provide a topographical and statistical overview. Three poorly soluble drugs representing acidic (indomethacin), basic (carvedilol), and neutral (fenofibrate) categories have been studied. The macroscopic solubility behavior agrees with literature and exhibits an overall increasing solubility from low pH and total amphiphile concentration to high pH and total amphiphile concentration. Within the matrix, all three drugs display different topographies, which can be related to the statistical effect levels of the individual amphiphiles or amphiphile interactions on solubility. The study also identifies previously unreported three and four way factor interactions notably between bile salt, phospholipid, pH, and total amphiphile concentration. In addition, the results also reveal that solubility variability is linked to the number of amphiphiles and the respective ratios in the measurement fluid, with the minimum variation present in systems containing all four amphiphiles. The individual 4CMD experiments within the matrix can be linked to provide a possible intestinal solubility window for each drug that could be applied in PBPK modeling systems. Overall the approach provides a novel overview of intestinal solubility topography along with greater detail on the impact of the various factors studied; however, each matrix requires 351 individual solubility measurements. Further studies will be required to refine the experimental protocol in order the maximize information garnered while minimizing the number of measurements required.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Líquidos Corporais/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos/fisiologia , Secreções Intestinais/química , Modelos Biológicos , Administração Oral , Ácidos e Sais Biliares/química , Carvedilol/química , Formas de Dosagem , Fenofibrato/química , Humanos , Concentração de Íons de Hidrogênio , Indometacina/química , Absorção Intestinal/fisiologia , Monoglicerídeos/química , Concentração Osmolar , Fosfolipídeos/química , Solubilidade , Tensoativos/química
4.
Mol Pharm ; 14(12): 4132-4144, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28749696

RESUMO

The absorption of poorly water-soluble drugs is influenced by the luminal gastrointestinal fluid content and composition, which control solubility. Simulated intestinal fluids have been introduced into dissolution testing including endogenous amphiphiles and digested lipids at physiological levels; however, in vivo individual variation exists in the concentrations of these components, which will alter drug absorption through an effect on solubility. The use of a factorial design of experiment and varying media by introducing different levels of bile, lecithin, and digested lipids has been previously reported, but here we investigate the solubility variation of poorly soluble drugs through more complex biorelevant amphiphile interactions. A four-component mixture design was conducted to understand the solubilization capacity and interactions of bile salt, lecithin, oleate, and monoglyceride with a constant total concentration (11.7 mM) but varying molar ratios. The equilibrium solubility of seven low solubility acidic (zafirlukast), basic (aprepitant, carvedilol), and neutral (fenofibrate, felodipine, griseofulvin, and spironolactone) drugs was investigated. Solubility results are comparable with literature values and also our own previously published design of experiment studies. Results indicate that solubilization is not a sum accumulation of individual amphiphile concentrations, but a drug specific effect through interactions of mixed amphiphile compositions with the drug. This is probably due to a combined interaction of drug characteristics; for example, lipophilicity, molecular shape, and ionization with amphiphile components, which can generate specific drug-micelle affinities. The proportion of each component can have a remarkable influence on solubility with, in some cases, the highest and lowest points close to each other. A single-point solubility measurement in a fixed composition simulated media or human intestinal fluid sample will therefore provide a value without knowledge of the surrounding solubility topography meaning that variability may be overlooked. This study has demonstrated how the amphiphile ratios influence drug solubility and highlights the importance of the envelope of physiological variation when simulating in vivo drug behavior.


Assuntos
Líquidos Corporais/fisiologia , Liberação Controlada de Fármacos/fisiologia , Absorção Intestinal/fisiologia , Intestinos/fisiologia , Tensoativos , Variação Biológica da População , Biofarmácia , Líquidos Corporais/química , Química Farmacêutica , Humanos , Concentração de Íons de Hidrogênio , Micelas , Modelos Biológicos , Solubilidade
5.
Mol Pharm ; 14(12): 4170-4180, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29072917

RESUMO

The oral route is the preferred option for drug administration but contains the inherent issue of drug absorption from the gastro-intestinal tract (GIT) in order to elicit systemic activity. A prerequisite for absorption is drug dissolution, which is dependent upon drug solubility in the variable milieu of GIT fluid, with poorly soluble drugs presenting a formulation and biopharmaceutical challenge. Multiple factors within GIT fluid influence solubility ranging from pH to the concentration and ratio of amphiphilic substances, such as phospholipid, bile salt, monoglyceride, and cholesterol. To aid in vitro investigation simulated intestinal fluids (SIF) covering the fasted and fed state have been developed. SIF media is complex and statistical design of experiment (DoE) investigations have revealed the range of solubility values possible within each state due to physiological variability along with the media factors and factor interactions which influence solubility. However, these studies require large numbers of experiments (>60) and are not feasible or sensible within a drug development setting. In the current study a smaller dual level, reduced experimental number (20) DoE providing three arms covering the fasted and fed states along with a combined analysis has been investigated. The results indicate that this small scale investigation is feasible and provides solubility ranges that encompass published data in human and simulated fasted and fed fluids. The measured fasted and fed solubility ranges are in agreement with published large scale DoE results in around half of the cases, with the differences due to changes in media composition between studies. Indicating that drug specific behaviors are being determined and that careful media factor and concentration level selection is required in order to determine a physiologically relevant solubility range. The study also correctly identifies the major single factor or factors which influence solubility but it is evident that lower significance factors (for example bile salt) are not picked up due to the lower sample number employed. A similar issue is present with factor interactions with only a limited number available for study and generally not determined to have a significant solubility impact due to the lower statistical power of the study. The study indicates that a reduced experimental number DoE is feasible, will provide solubility range results with identification of major solubility factors however statistical limitations restrict the analysis. The approach therefore represents a useful initial screening tool that can guide further in depth analysis of a drug's behavior in gastrointestinal fluids.


Assuntos
Líquidos Corporais/química , Técnicas In Vitro/métodos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/química , Administração Oral , Líquidos Corporais/fisiologia , Jejum/fisiologia , Estudos de Viabilidade , Humanos , Concentração de Íons de Hidrogênio , Intestinos/química , Intestinos/fisiologia , Preparações Farmacêuticas/administração & dosagem , Solubilidade
6.
Int J Pharm ; : 124733, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39317247

RESUMO

A suite of fasted state simulated intestinal fluid (SIF), based on variability observed in a range of fasted state human intestinal fluid (HIF) samples was used to study the solubility of eight poorly soluble drugs (three acidic drugs (naproxen, indomethacin and phenytoin), two basic drugs (carvedilol and tadalafil) and three neutral drugs (felodipine, fenofibrate, griseofulvin)). Particle size of the colloidal structures formed in these SIF in the presence and absence of drugs was measured using dynamic light scattering and nanoparticle tracking analysis. Results indicate that drug solubility tends to increase with increasing total amphiphile concentration (TAC) in SIF with acidic drugs proving to be more soluble than basic or neutral drug in the media evaluated. Dynamic light scattering showed that as the amphiphile concentration increased, the hydrodynamic diameters of the structures decreased. The scattering distribution confirmed the polydispersity of the simulated intestinal fluids compared to the monodisperse distribution observed for FaSSIF v1). There was a large difference in the size of the structures found based on the composition of the SIF, for example, the diameter of the structures measured in felodipine in the minimum TAC media was measured to be 170 ± 5 nm which decreased to 5.1 ± 0.2 nm in the maximum TAC media point. The size measured of the colloidal structures of felodipine in the FaSSIF v1 was 86 ± 1 nm. However, there was no simple correlation between solubility and colloidal size. Nanoparticle tracking analysis was used for the first time to characterise colloidal structures within SIF and the results were compared to those obtained by dynamic light scattering. The particle size measured by dynamic light scattering was generally greater in media with a lower concentration of amphiphiles and smaller in media of a higher concentration of amphiphiles, compared to that of the data yielded by nanoparticle tracking analysis. This work shows that the colloidal structures formed vary depending on the composition of SIF which affects the solubility. Work is ongoing to determine the relationship between colloidal structure and solubility.

7.
ACS Appl Mater Interfaces ; 16(31): 40767-40786, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39047263

RESUMO

A modular and 3D compartmentalized microfluidic system with electrospun porous membranes (PMs) for epithelialized organ-on-a-chip systems is presented. Our novel approach involves direct deposition of polymer nanofibers onto a patterned poly(methyl methacrylate) (PMMA) substrate using electrospinning, resulting in an integrated PM within the microfluidic chip. The in situ deposition of the PM eliminates the need for additional assembly processes. To demonstrate the high throughput membrane integration capability of our approach, we successfully deposited nanofibers onto various chip designs with complex microfluidic planar structures and expanded dimensions. We characterized and tested the fully PMMA chip by growing an epithelial monolayer using the Caco-2 cell line to study drug permeability. A comprehensive analysis of the bulk and surface properties of the membrane's fibers made of PMMA and polystyrene (PS) was conducted to determine the polymer with the best performance for cell culture and drug transport applications. The PMMA-based membrane, with a PMMA/PVP ratio of 5:1, allowed for the fabrication of a uniform membrane structure along the aligned nanofibers. By modulating the fiber diameter and total thickness of the membrane, we could adjust the membrane's porosity for specific cell culture applications. The PMMA-PVP nanofibers exhibited a low polydispersity index value, indicating monodispersed nanofibers and a more homogeneous and uniform fiber network. Both types of membranes demonstrated excellent mechanical integrity under medium perfusion flow rates. However, the PMMA-PVP composition offered a tailored porous structure with modulable porosity based on the fiber diameter and thickness. Our developed platform enables dynamic in vitro modeling of the epithelial barrier and has applications in drug transport and in vitro microphysiological systems.


Assuntos
Dispositivos Lab-On-A-Chip , Nanofibras , Polimetil Metacrilato , Humanos , Células CACO-2 , Porosidade , Polimetil Metacrilato/química , Nanofibras/química , Membranas Artificiais , Poliestirenos/química
8.
Eur J Pharm Biopharm ; 199: 114302, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657741

RESUMO

Orally administered solid drug must dissolve in the gastrointestinal tract before absorption to provide a systemic response. Intestinal solubility is therefore crucial but difficult to measure since human intestinal fluid (HIF) is challenging to obtain, varies between fasted (Fa) and fed (Fe) states and exhibits inter and intra subject variability. A single simulated intestinal fluid (SIF) cannot reflect HIF variability, therefore current approaches are not optimal. In this study we have compared literature Fa/FeHIF drug solubilities to values measured in a novel in vitro simulated nine media system for either the fasted (Fa9SIF) or fed (Fe9SIF) state. The manuscript contains 129 literature sampled human intestinal fluid equilibrium solubility values and 387 simulated intestinal fluid equilibrium solubility values. Statistical comparison does not detect a difference (Fa/Fe9SIF vs Fa/FeHIF), a novel solubility correlation window enclosed 95% of an additional literature Fa/FeHIF data set and solubility behaviour is consistent with previous physicochemical studies. The Fa/Fe9SIF system therefore represents a novel in vitro methodology for bioequivalent intestinal solubility determination. Combined with intestinal permeability this provides an improved, population based, biopharmaceutical assessment that guides formulation development and indicates the presence of food based solubility effects. This transforms predictive ability during drug discovery and development and may represent a methodology applicable to other multicomponent fluids where no single component is responsible for performance.


Assuntos
Jejum , Absorção Intestinal , Solubilidade , Equivalência Terapêutica , Humanos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Jejum/metabolismo , Administração Oral , Mucosa Intestinal/metabolismo , Secreções Intestinais/química , Secreções Intestinais/metabolismo , Permeabilidade
9.
J Adv Pharm Technol Res ; 15(3): 150-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290535

RESUMO

Diabetes is a widespread disease that needs to be controlled. Therapeutic monitoring of drugs is very helpful in maintaining desirable doses. To study a correlation between the blood level of metformin (to a lesser extent, glimepiride) and genotyping (mainly the SULT1A1 genotype). Determine drug levels using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) tool. A validated LC-MS/MS method was developed to determine metformin and glimepiride levels in human plasma. DNA extraction was performed using Jena Bioscience's Blood DNA preparation, in which a column kit was used to extract DNA for genetic polymorphism. The investigation was carried out using both medications in type 2 diabetes patients alongside the genetic polymorphism. One hundred and six patients were assessed. The prevalence of homozygosity for SULT1A1 and wild-type CYP2D6 * 4 were 72.6% and 73.6%, respectively. After adjustment for daily intake of metformin, three patients out of five with the highest levels of metformin had no homozygosity (SULT1A1 genotype). Statistically, variables that demonstrated an insignificant correlation with the level of metformin were body mass index (rs (87) = 0.32, P = 0.011) and age (rs (87) =0.26, P = 0.017). The homozygous (SULT1A1 genotype) correlation was moderate (rs (87) =0.21, P = 0.052). According to the findings, patients with the wt/wt CYP2D6 genotype had considerably greater levels of endoxifen than those with the v/v CYP2D6 genotype. The study's results reported a probable correlation between the blood level of metformin (to a lesser extent, glimepiride) and genotyping (mainly the SULT1A1 genotype). Genotype-guided drug therapy may provide a novel contribution to maximize drug efficacy and/or minimize toxicity.

10.
Pharmaceutics ; 15(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896244

RESUMO

Solubility is a critical parameter controlling drug absorption after oral administration. For poorly soluble drugs, solubility is influenced by the complex composition of intestinal media and the influence of dosage form excipients, which can cause bioavailability and bioequivalence issues. This study has applied a small scale design of experiment (DoE) equilibrium solubility approach in order to investigate the impact of excipients on fenofibrate solubility in simulated fasted and fed intestinal media. Seven media parameters (bile salt (BS), phospholipid (PL), fatty acid, monoglyceride, cholesterol, pH and BS/PL ratio) were assessed in the DoE and in excipient-free media, and only pH and sodium oleate in the fasted state had a significant impact on fenofibrate solubility. The impact of excipients were studied at two concentrations, and for polyvinylpyrrolidone (PVP, K12 and K29/32) and hydroxypropylmethylcellulose (HPMC, E3 and E50), two grades were studied. Mannitol had no solubility impact in any of the DoE media. PVP significantly increased solubility in a media-, grade- and concentration-dependent manner, with the biggest change in fasted media. HPMC and chitosan significantly reduced solubility in both fasted and fed states in a media-, grade- and concentration-dependent manner. The results indicate that the impact of excipients on fenofibrate solubility is a complex interplay of media composition in combination with their physicochemical properties and concentration. The results indicate that in vitro solubility studies combining the drug of interest, proposed excipients along with suitable simulated intestinal media recipes will provide interesting information with the potential to guide formulation development.

11.
Int J Pharm X ; 5: 100168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36852395

RESUMO

The aim of this work was to assess the impact of solvent selection on the characteristics of niosomes prepared by microfluidic mixing. To achieve this, niosomes were manufactured using bench-scale microfluidic mixing systems by changing the type of aqueous and/or organic solvents used to prepare the particles. Niosomes were prepared using different non-ionic surfactants and cholesterol compositions with different solvents and evaluated to investigate the influence of organic and aqueous solvents on the particle's physiochemical characteristics. Here we demonstrated that the solvent selection is a key factor to be considered during the preparation of niosomes with microfluidic mixing. The type of organic solvent was shown to significantly affect the size and the size distribution of the prepared particles. In general, niosome size increased with increasing organic solvent polarity, without affecting the niosomes stability. Moreover, changing the aqueous solvent used to hydrate the lipid components significantly (p < 0.05) affected the characteristics of the prepared niosomes in terms of particles size, size distribution, and surface charge. This impact of solvent selection on the final product is dependent on the lipid components where niosomes prepared with different compositions will have different characteristics when changing the type of organic and/or aqueous solvents. The apparent encapsulation efficiency of quinine as a model hydrophobic drug was subsequently shown to be significantly (p < 0.05) affected by the type of the organic solvent used to prepare the niosomes, while the impact of the organic solvent had less impact on the apparent encapsulation of atenolol as a model hydrophilic drug.

12.
Eur J Pharm Biopharm ; 193: 58-73, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890541

RESUMO

Intestinal drug solubility is a key parameter controlling absorption after the administration of a solid oral dosage form. The ability to measure fed state solubility in vitro is limited and multiple simulated intestinal fluid recipes have been developed but with no consensus which is optimal. This study has utilised nine bioequivalent simulated fed intestinal media recipes that cover over 90% of the compositional variability of sampled fed human intestinal fluid. The solubility of 24 drugs (Acidic; furosemide, ibuprofen, indomethacin, mefenamic acid, naproxen, phenytoin, piroxicam, valsartan, zafirlukast: Basic; aprepitant, atazanavir, bromocriptine, carvedilol, dipyridamole, posaconazole, tadalafil: Neutral; acyclovir, carbamazepine, felodipine, fenofibrate, griseofulvin, itraconazole, paracetamol, probucol) has been assessed to determine if structured solubility behaviour is present. The measured solubility behaviour can be split into four categories and is consistent with drug physicochemical properties and previous solubility studies. For acidic drugs (category 1) solubility is controlled by media pH and the lowest and highest pH media identify the lowest and highest solubility in 90% of cases. For weakly acidic, basic and neutral drugs (category 2) solubility is controlled by media pH and total amphiphile concentration (TAC), a consistent solubility pattern is evident with variation related to individual drug media component interactions. The lowest and highest pH × TAC media identify the lowest and highest solubility in 70% and 90% of cases respectively. Four drugs, which are non-ionised in the media systems (category 3), have been identified with a very narrow solubility range, indicating minimal impact of the simulated media on solubility. Three drugs exhibit solubility behaviour that is not consistent with the remainder (category 4). The results indicate that the use of two bioequivalent fed intestinal media from the original nine will identify in vitro the maximum and minimum solubility values for the majority of drugs and due to the media derivation this is probably applicable in vivo. When combined with a previous fasted study, this introduces interesting possibilities to measure a solubility range in vitro that can provide Quality by Design based decisions to rationalise drug and formulation development. Overall this indicates that the multi-dimensional media system is worthy of further investigation as in vitro tool to assess fed intestinal solubility.


Assuntos
Indometacina , Intestinos , Humanos , Solubilidade , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas/química , Absorção Intestinal
13.
Int J Pharm ; 631: 122473, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36493970

RESUMO

During drug product development, stability studies are used to ensure that the safety and efficacy of a product are not affected during storage. Any change in the dissolution performance of a product must be investigated, as this may indicate a change in the bioavailability. In this study, three different griseofulvin formulations were prepared containing microcrystalline cellulose (MCC) with either mannitol, lactose monohydrate, or dibasic calcium phosphate anhydrous (DCPA). The tensile strength, porosity, contact angle, disintegration time, and dissolution rate were measured after storage under five different accelerated temperature and humidity conditions for 1, 2, and 4 weeks. The dissolution rate was found to decrease after storage for all three batches, with the change in dissolution rate strongly correlating with the storage humidity. The changes in physical properties of each formulation were found to relate to either the premature swelling (MCC/DCPA, MCC/lactose) or dissolution (MCC/mannitol) of particles during storage. These results are also discussed with consideration of the performance- and stability-controlling mechanisms of placebo tablets of the same formulations (Maclean et al., 2021; Maclean et al., 2022).


Assuntos
Griseofulvina , Lactose , Solubilidade , Lactose/química , Comprimidos/química , Manitol
14.
Eur J Pharm Biopharm ; 186: 74-84, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934829

RESUMO

For solid oral dosage forms drug solubility in intestinal fluid is an important parameter influencing product performance and bioavailability. Solubility along with permeability are the two parameters applied in the Biopharmaceutics and Developability Classification Systems (DCS) to assess a drug's potential for oral administration. Intestinal solubility varies with the intestinal contents and the differences between the fasted and fed states are recognised to influence solubility and bioavailability. In this study a novel fed state simulated media system comprising of nine media has been utilised to measure the solubility of seven drugs (ibuprofen, mefenamic acid, furosemide, dipyridamole, griseofulvin, paracetamol and acyclovir) previously studied in the fasted state DCS. The results demonstrate that the fed nine media system provides a range of solubility values for each drug and solubility behaviour is consistent with published design of experiment studies conducted in either the fed or fasted state. Three drugs (griseofulvin, paracetamol and acyclovir) exhibit very narrow solubility distributions, a result that matches published behaviour in the fasted state, indicating that this property is not influenced by the concentration of simulated media components. The nine solubility values for each drug can be utilised to calculate a dose/solubility volume ratio to visualise the drug's position on the DCS grid. Due to the derivation of the nine media compositions the range and catergorisation could be considered as bioequivalent and can be combined with the data from the original fed intestinal fluid analysis to provide a population based solubility distribution. This provides further information on the drugs solubility behaviour and could be applied to quality by design formulation approaches. Comparison of the fed results in this study with similar published fasted results highlight that some differences detected match in vivo behaviour in food effect studies. This indicates that a combination of the fed and fasted systems may be a useful in vitro biopharmaceutical performance tool. However, it should be noted that the fed media recipes in this study are based on a liquid meal (Ensure Plus) and this may not be representative of alternative fed states achieved through ingestion of a solid meal. Nevertheless, this novel approach provides greater in vitro detail with respect to possible in vivo biopharmaceutical performance, an improved ability to apply risk-based approaches and the potential to investigate solubility based food effects. The system is therefore worthy of further investigation but studies will be required to expand the number of drugs measured and link the in vitro measurements to in vivo results.


Assuntos
Acetaminofen , Griseofulvina , Humanos , Solubilidade , Preparações Farmacêuticas , Intestinos , Administração Oral , Absorção Intestinal
15.
Nat Prod Res ; 37(23): 4063-4068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36657413

RESUMO

Endophytic fungi are known to be a rich source of anti-infective drugs. In our study, Allium cepa was investigated for fungal diversity using different media to give 11 isolates which were identified morphologically. Out of the isolated fungal strains, Penicillium sp. (LCEF10) revealed potential anti-infective activity against the tested microbes (Fusarium solani ATTC 25922, Pseudomonas aeruginosa (ATTC 29231), Staphylococcus aureus ATTC 27853, Candida albicans ATTC 10231), besides, their MICs were measured by well diffusion method, therefore, it was subjected to molecular identification in addition to phylogenetic analysis. Moreover, the ITS sequence of strain LCEF10 showed a consistent assignment with the highest sequence similarity (99.81%) to Penicillium oxalicum NRRL 787. The crude ethyl acetate extract of Penicillium sp. LCEF10 was investigated for metabolomic analysis using LC-HR-ESI-MS. The metabolic profiling revealed the presence of polyketides, macrolides, phenolics and terpenoids. Furthermore, in silico molecular docking study was carried out to predict which compounds most likely responsible for the anti-infective activity.


Assuntos
Anti-Infecciosos , Cebolas , Filogenia , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Fungos , Candida albicans , Endófitos
16.
Eur J Pharm Biopharm ; 177: 126-134, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35718078

RESUMO

Intestinal drug solubility is a key parameter controlling oral absorption but varies both intra and inter individuals and between the fasted and fed states, with food intake known to alter the bioavailability of many compounds. Intestinal solubility can be measured in vitro either using sampled fed human intestinal fluid (FeHIF) or simulated fed intestinal fluid (SIF) but neither approach is optimal. FeHIF is difficult to obtain and variable, whilst for fed SIF multiple recipes are available with no consensus on the ideal version. A recent study characterised FeHIF aspirates using a multidimensional approach and calculated nine simulated media recipes that covered over ninety percent of FeHIF compositional variability. In this study the equilibrium solubility of thirteen drugs have been measured using the nine simulated media recipes and compared to multiple previous design of experiment (DoE) studies, which have examined the impact of fed SIF media components on solubility. The measured nine media solubility data set is only statistically equivalent to the large scale 92 media DoE in 4 out of 13 drug comparisons, but has improved equivalence against small scale DoEs (9 or 10 media) with 6 out of 9 or 10 out of 12 (9 and 10 media respectively) equivalent. Selective removal of non-biorelevant compositions from the 92 media DoE improves statistical equivalence to 9 out of 13 comparisons. The results indicate that solubility equivalence is linked to media component concentrations and compositions, the nine media system is measuring a similar solubility space to previous systems, with a narrower solubility range than the 92 point DoE but equivalent to smaller DoE systems. Phenytoin and tadalafil display a narrow solubility range, a behaviour consistent with previous studies in fed and fasted states and only revealed through the multiple media approach. Custom DoE analysis of the nine media results to determine the most statistically significant component influencing solubility does not detect significant components. Indicating that the approach has a low statistical resolution and is not appropriate if determination of media component significance is required. This study demonstrates that it is possible to assess the fed intestinal equilibrium solubility envelope using the nine media recipes obtained from a multi-dimensional analysis of fed HIF. The derivation of the nine media compositions coupled with the results in this study indicate that the solubility results are more likely to reflect the fed intestinal solubility envelope than previous DoE studies and highlight that the system is worthy of further investigation.


Assuntos
Secreções Intestinais , Intestinos , Jejum , Humanos , Técnicas In Vitro , Absorção Intestinal , Solubilidade
17.
Eur J Pharm Biopharm ; 176: 108-121, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605926

RESUMO

Drug solubility in intestinal fluid is a key parameter controlling absorption after the administration of a solid oral dosage form. To measure solubility in vitro simulated intestinal fluids have been developed, but there are multiple recipes and the optimum is unknown. This situation creates difficulties during drug discovery and development research. A recent study characterised sampled fasted intestinal fluids using a multidimensional approach to derive nine bioequivalent fasted intestinal media that covered over 90% of the compositional variability. These media have been applied in this study to examine the equilibrium solubility of twenty one exemplar drugs (naproxen, indomethacin, phenytoin, zafirlukast, piroxicam, ibuprofen, mefenamic acid, furosemide, aprepitant, carvedilol, tadalafil, dipyridamole, posaconazole, atazanavir, fenofibrate, felodipine, griseofulvin, probucol, paracetamol, acyclovir and carbamazepine) to determine if consistent solubility behaviour was present. The bioequivalent media provide in the majority of cases structured solubility behaviour that is consistent with physicochemical properties and previous solubility studies. For the acidic drugs (pKa < 6.3) solubility is controlled by media pH, the profile is identical and consistent and the lowest and highest pH media identify the lowest and highest solubility in over 70% of cases. For weakly acidic (pKa > 8), basic and neutral drugs solubility is controlled by a combination of media pH and total amphiphile concentration (TAC), a consistent solubility behaviour is evident but with variation related to individual drug interactions within the media. The lowest and highest pH × TAC media identify the lowest and highest solubility in over 78% of cases. A subset of the latter category consisting of neutral and drugs non-ionised in the media pH range have been identified with a very narrow solubility range, indicating that the impact of the simulated intestinal media on their solubility is minimal. Two drugs probucol and atazanavir exhibit unusual behaviour. The study indicates that the use of two appropriate bioequivalent fasted intestinal media from the nine will identify in vitro the maximum and minimum solubility boundaries for drugs and due to the media derivation this is probably applicable in vivo. These media could be applied during discovery and development activities to provide a solubility range, which would assist placement of the drug within the BCS/DCS and rationalise drug and formulation decisions.


Assuntos
Absorção Intestinal , Probucol , Administração Oral , Sulfato de Atazanavir , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas/química , Solubilidade
18.
Int J Pharm X ; 4: 100137, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36386005

RESUMO

Lipid nanoparticles have gained much attention due to their potential as drug delivery systems. They are safe, effective, and be targeted to particular tissues to deliver their payload. Niosomes are one type of lipid nanoparticles that comprise non-ionic surfactants which have proven to be effective due to their stability and biocompatibility. Different manufacturing processes have been reported for niosome preparation, but many of them are not scalable or reproducible for pharmaceutical use. In this study, microfluidic mixing was used to prepare niosomes with different lipid compositions by changing the type of non-ionic surfactant. Niosomes were evaluated for their physicochemical characteristics, morphology, encapsulation efficacy, release profiles of atenolol as a model hydrophilic compound, and cytotoxic activities. Microfluidic mixing allows for particle self-assembly and drug loading in a single step, without the need for post-preparation size reduction. Depending on the lipid composition, the empty particles were <90 nm in size with a uniform distribution. A slight but not significant increase in these values was observed when loading atenolol in most of the prepared formulations. All formulations were spherical and achieved variable levels of atenolol encapsulation. Atenolol release was slow and followed the Korsmeyer-Peppas model regardless of the surfactant type or the percentage of cholesterol used.

19.
Eur J Pharm Biopharm ; 170: 160-169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923138

RESUMO

After oral administration, a drug's solubility in intestinal fluid is an important parameter influencing bioavailability and if the value is known it can be applied to estimate multiple biopharmaceutical parameters including the solubility limited absorbable dose. Current in vitro measurements may utilise fasted human intestinal fluid (HIF) or simulated intestinal fluid (SIF) to provide an intestinal solubility value. This single point value is limited since its position in relation to the fasted intestinal solubility envelope is unknown. In this study we have applied a nine point fasted equilibrium solubility determination in SIF, based on a multi-dimensional analysis of fasted human intestinal fluid composition, to seven drugs that were previously utilised to investigate the developability classification system (ibuprofen, mefenamic acid, furosemide, dipyridamole, griseofulvin, paracetamol and acyclovir). The resulting fasted equilibrium solubility envelope encompasses literature solubility values in both HIF and SIF indicating that it measures the same solubility space as current approaches with solubility behaviour consistent with previous SIF design of experiment studies. In addition, it identifies that three drugs (griseofulvin, paracetamol and acyclovir) have a very narrow solubility range, a feature that single point solubility approaches would miss. The measured mid-point solubility value is statistically equivalent to the value determined with the original fasted simulated intestinal fluid recipe, further indicating similarity and that existing literature results could be utilised as a direct comparison. Since the multi-dimensional approach covered greater than ninety percent of the variability in fasted intestinal fluid composition, the measured maximum and minimum equilibrium solubility values should represent the extremes of fasted intestinal solubility and provide a range. The seven drugs all display different solubility ranges and behaviours, a result also consistent with previous studies. The dose/solubility ratio for each measurement point can be plotted using the developability classification system to highlight individual drug behaviours. The lowest solubility represents a worst-case scenario which may be useful in risk-based quality by design biopharmaceutical calculations than the mid-point value. The method also permits a dose/solubility ratio frequency distribution determination for the solubility envelope which permits further risk-based refinement, especially where the drug crosses a classification boundary. This novel approach therefore provides greater in vitro detail with respect to possible biopharmaceutical performance in vivo and an improved ability to apply risk-based analysis to biopharmaceutical performance. Further studies will be required to expand the number of drugs measured and link the in vitro measurements to in vivo results.


Assuntos
Biofarmácia , Secreções Intestinais/química , Preparações Farmacêuticas/química , Administração Oral , Disponibilidade Biológica , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Preparações Farmacêuticas/administração & dosagem , Solubilidade
20.
Int J Pharm X ; 4: 100106, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977560

RESUMO

Stability studies are an integral part of the drug development process for any drug product. In addition to monitoring chemical degradation, the physical stability of a drug product must also be evaluated to ensure that the drug release and performance is not affected by storage. In this study, directly compressed tablets of 16 different formulations were exposed to an accelerated stability program to quantify changes in tablet breaking force, porosity, contact angle and disintegration time. Tablets were exposed to five different storage conditions from 37∘ C/30% relative humidity (RH) to 70∘ C/75%RH with testing after 2 and 4 weeks of storage. Each formulation contained two different fillers (47% w/w each), a disintegrant (5% w/w) and magnesium stearate (1% w/w). The results show that tablets stored at high humidity show increases in porosity and decreases in tensile strength, particularly if they contain a highly hygroscopic filler such as microcrystalline cellulose (MCC). For tablets stored at high temperature, the most commonly affected property was the tablet wettability, measured by sessile drop contact angle measurements. These results are considered in combination with the performance-controlling disintegration mechanism (Maclean et al., 2021) to identify the critical properties which influence the performance after storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA