Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Lab ; 70(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345965

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type-9 (PCSK-9) is a serine protease with profound effects on plasma LDL-C, the major risk factor for cardiovascular diseases (CVDs). However, plasma PCSK-9 level and its association with the biomarkers of CVDs, diabetes, and associated complications have not yet been reported in the northeastern population of India. METHODS: Of the total cohort (n = 233), we analyzed healthy controls (HC; n = 50), freshly diagnosed type-2-diabetes mellitus (T2DM-FD; n = 46), T2DM treated (T2DM-T; n = 49), diabetic nephropathy (T2DM-N; n = 43), and diabetic dyslipidemia (T2DM-DL; n = 45) subjects. Plasma PCSK-9 and other biological determinants associated with T2DM, CVD, and nephrotic dysfunction were assessed. RESULTS: The level of plasma PCSK-9 in HC, T2DM-FD, T2DM-T, T2DM-N, and T2DM-DL groups was found to be 184.1 ± 13.83, 183.1 ± 24.4.3, 241.8 ± 75.42, 403.7 ± 85.94, and 641.3 ± 135.5 ng/mL, respectively, indicating its role in the severity of the here-mentioned complications. Moreover, plasma PCSK-9 levels further showed a significant correlation with the biomarkers of hyperglycemia, particularly HbA1c, as well as LDL-C in T2DM-FD, T2DM-N, and T2DM-DL subjects of the Indian population, while moderate association in T2DM-T subjects. CONCLUSIONS: Our first-of-its-kind clinical study aiming to quantify the circulatory PCSK-9 level in the Indian population concluded that elevated PCSK-9 was significantly associated with the severity of diabetes and associated complications. Moreover, such elevation in PCSK-9 might be attributed to the lipid- and glucoselowering medication-induced SREBP-2-dependent mechanisms. Since our conclusion is based on a pilot study, further cohort studies in larger populations of India are required to get a generalization regarding the role of PCSK-9 in DM and associated complications.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Projetos Piloto , LDL-Colesterol , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Fatores de Risco , Biomarcadores , Doenças Cardiovasculares/diagnóstico
2.
Glycobiology ; 33(6): 442-453, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-36762911

RESUMO

Hyperglycemia is a poorly controlled diabetic condition, affects about 70% of people all round the world. In the year 2015, about 41.5 crore people were diabetic and is expected to reach around 64.3 crore by the year 2040. Cardiovascular diseases (CVDs) are considered as one of the major risk factors that cause more than half of the death of diabetic patients and promote related comorbidities. Atherosclerosis and amyloidosis are the prime factors linked with CVDs. Apolipoprotein A-I (ApoA-I) of HDL has protective action against CVDs, participates in reverse cholesterol transport mechanism and lipid metabolism, but gets easily glycated under prolonged hyperglycemic aura, i.e. glycation. ApoA-I has a potent role in maintenance of glucose level, providing a compelling link between diabetes and CVDs. Increased protein glycation in people with diabetes promotes atherosclerosis, which might play possible role in promotion of protein aggregation by altering the protein structure and its conformation. Here, we intend to investigate the mechanistic behavior of ApoA-I under the menace of glycation and its impact on ApoA-I structure and function that possibly link with aggregation or amyloidosis.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hiperglicemia , Humanos , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Reação de Maillard , Aterosclerose/metabolismo
3.
Entropy (Basel) ; 24(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35626478

RESUMO

Neurodegenerative disorders involve various pathophysiological pathways, and finding a solution for these issues is still an uphill task for the scientific community. In the present study, a combination of molecular docking and dynamics approaches was applied to target different pathways leading to neurodegenerative disorders such as Alzheimer's disease. Initially, abrineurin natural inducers were screened using physicochemical properties and toxicity assessment. Out of five screened compounds, a pentacyclic triterpenoid, i.e., Soyasapogenol B appeared to be the most promising after molecular docking and simulation analysis. Soyasapogenol B showed low TPSA (60.69), high absorption (82.6%), no Lipinski rule violation, and no toxicity. Docking interaction analysis revealed that Soyasapogenol B bound effectively to all of the targeted proteins (AChE, BuChE MAO-A, MAO-B, GSK3ß, and NMDA), in contrast to other screened abrineurin natural inducers and inhibitors. Importantly, Soyasapogenol B bound to active site residues of the targeted proteins in a similar pattern to the native ligand inhibitor. Further, 100 ns molecular dynamics simulations analysis showed that Soyasapogenol B formed stable complexes against all of the targeted proteins. RMSD analysis showed that the Soyasapogenol B-protein complex exhibited average RMSD values of 1.94 Å, 2.11 Å, 5.07 Å, 2.56 Å, 3.83 Å and 4.07 Å. Furthermore, the RMSF analysis and secondary structure analysis also indicated the stability of the Soyasapogenol B-protein complexes.

4.
Arch Biochem Biophys ; 686: 108373, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32325089

RESUMO

Non-enzymatic protein glycation results in the formation of advanced glycation end products (AGEs) leads to the pathogenesis of long-term diabetic complications. Iridin (ID), an antioxidant, plays an important role in protecting against oxidative stress and could therefore be an efficacious anti-glycating regimen. Herein, we assessed the anti-glycating potential of ID against d-ribose induced glycation of bovine serum albumin (BSA) by various biophysical and biochemical techniques. Our results from several physicochemical assays advocated that ID was able to evidently prevent the AGEs generation via reducing hyperchromicity, early glycation products (EGPs), carbonyl content (CC), hydroxymethyl furfural (HMF) content, production of fluorescent AGEs, protection against loss of secondary structure (i.e. α-helix and ß-sheets) of proteins, increasing the free lysine and free arginine content, reduced binding of congo red (CR), and reduced thioflavin T (ThT) and 8-aninilo-1-napthalene sulphonate (ANS)-specific fuorescence in glycated-BSA (Gly-BSA). On the basis of these findings, we concluded that ID possesses the significant anti-glycation potential and may be established as a remarkable anti-AGEs therapeutic agent. Further in-vivo and clinical studies are still warranted to uncover the therapeutic effects of ID against age-related as well as metabolic diseases.


Assuntos
Antioxidantes/química , Protaminas/química , Ribose/química , Soroalbumina Bovina/química , Arginina/química , Benzotiazóis/química , Sítios de Ligação , Corantes Fluorescentes/química , Produtos Finais de Glicação Avançada/química , Glicosilação , Lisina/química , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Estrutura Secundária de Proteína
5.
Pak J Pharm Sci ; 32(6): 2697-2708, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31969304

RESUMO

Diabetic retinopathy and nephropathy are questionably the most dreaded complications of diabetes; contribute to serious morbidity and mortality. The current study was undertaken with the aim of exploring the anti-lipoperoxidative and antioxidant status including nephroprotective and retinoprotective potential of Phyllanthus virgatus methanolic extract and its partially purified fraction in streptozotocin (STZ)-induced diabetic stressed rats. Diabetes was induced by intraperitoneal injection of Streptozotocin (60mg/kg B. Wt of rat). Among all the treatment groups, P. virgatus methanolic extract and its partially purified fraction at a dose of 50mg/kg (PET-1) and 0.5mg/kg (CT-1), respectively, showed significant protection against STZ-induced diabetic oxidative stress in rats with marked amelioration in lipid peroxidation byproducts level, antioxidant enzymes, nephroprotective and retinoprotective effects and plasma total antioxidant levels after treatment of 28 days. The combined results demonstrated significant protection against STZ-induced oxidative stress, nephropathy and retinopathy condition by P. virgatus methanolic extract and its bioactive compound.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Phyllanthus/química , Extratos Vegetais/uso terapêutico , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Retinopatia Diabética/patologia , Retinopatia Diabética/prevenção & controle , Hipoglicemiantes/isolamento & purificação , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fitoterapia/métodos , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar
6.
Arch Biochem Biophys ; 645: 87-99, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524430

RESUMO

Methylglyoxal (MGO), a reactive dicarbonyl metabolite is a potent arginine directed glycating agent which has implications for diabetes-related complications. Dicarbonyl metabolites are produced endogenously and in a state of misbalance, they contribute to cell and tissue dysfunction through protein and DNA modifications causing dicarbonyl stress. MGO is detoxified by glyoxalase 1 (GLO1) system in the cytoplasm. Reactive oxygen species (ROS) are known to aggravate the glycation process. Both the processes are closely linked, and their combined activity is often referred to as "glycoxidation" process. Glycoxidation of proteins has several consequences such as type 2 diabetes mellitus (T2DM), aging etc. In this study, we have investigated the glycation of low-density lipoprotein (LDL) using different concentrations of MGO for varied incubation time periods. The structural perturbations induced in LDL were analyzed by UV-Vis, fluorescence, circular dichroism spectroscopy, molecular docking studies, polyacrylamide gel electrophoresis, FTIR, thermal denaturation studies, Thioflavin T assay and isothermal titration calorimetry. The ketoamine moieties, carbonyl content and HMF content were quantitated in native and glycated LDL. Simulation studies were also done to see the effect of MGO on the secondary structure of the protein. We report structural perturbations, increased carbonyl content, ketoamine moieties and HMF content in glycated LDL as compared to native analog (native LDL). We report the structural perturbations in LDL upon modification with MGO which could obstruct its normal physiological functions and hence contribute to disease pathogenesis and associated complications.


Assuntos
Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Produtos Finais de Glicação Avançada , Humanos , Conformação Proteica , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia
7.
Phytother Res ; 32(12): 2417-2427, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30136446

RESUMO

The current study was undertaken to delineate the protective effect of Ginkgolide B, a phyto-constituent from Ginkgo biloba, on oxidized (ox)-LDL-induced endothelial dysfunction via targeting Lectin-like ox-LDL-receptor-1 (LOX-1), NADPH oxidase 4 (NOX-4), and other inflammatory proteins. Our results have shown that Ginkgolide B downregulated the expression of LOX-1 in ox-LDL-treated human umbilical vein endothelial cells (HUVECs) and RAW246.7 murine macrophages which ultimately resulted in decreased cholesterol deposits in HUVECs and RAW264.7. Moreover, Ginkgolide B suppressed the enhanced NOX4 expression, which was associated with attenuation of ROS generation in ox-LDL-stimulated HUVECs and RAW264.7 cells. Ginkgolide B also ameliorated the endothelial dysfunction by inhibiting the augmented expression of monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in ox-LDL-activated HUVECs. Furthermore, the enhanced expression of many inflammatory cytokines in ox-LDL-induced RAW264.7 macrophages, both at transcription and protein level, was significantly down-regulated after Ginkgolide B treatment. Ginkgolide B also illustrated atheroprotective property via suppressing the augmented expression of matrix metalloproteinase-1 and cyclooxygenase-2 in ox-LDL-stimulated RAW264.7 macrophages. In summary, our study has established that Ginkgolide B ameliorates endothelial dysfunction via targeting LOX-1, NOX-4, MCP-1, ICAM-1, and VCAM-1 along with the markers associated with inflammatory cascades and thus could be promoted as a valuable therapeutic agent in prevention and management of atherosclerosis.


Assuntos
Ginkgolídeos/farmacologia , Ginkgolídeos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lactonas/farmacologia , Lactonas/uso terapêutico , Lipoproteínas LDL , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/tratamento farmacológico , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Ginkgo biloba , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NADPH Oxidase 4/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Células RAW 264.7 , Receptores Depuradores Classe E/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/prevenção & controle
8.
Lipids Health Dis ; 14: 15, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25884722

RESUMO

BACKGROUND: The current perspective for the search of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor has been shifted towards a natural agent also having antioxidant property. Thus, this study was intended to isolate and identify the bioactive compounds from methanolic extract of Ficus virens bark (FVBM) and to evaluate their antioxidant, HMG-CoA reductase inhibitory and hypolipidemic activity. METHODS: Bioactivity guided fractionation and isolation of bioactive compound from FVBM extract has been done to isolate and characterize the potent HMG-CoA reductase (HMGR) inhibitor with antioxidant activity by using repeated extensive column chromatography followed by spectroscopic methods, including Infrared (IR), 1H & 13C nuclear magnetic resonance (NMR) and Mass spectrum analysis. The in vitro HMGR inhibition and enzyme kinetic assay was determined using HMG-CoA as substrate. In addition, antioxidant activity of the new isolated compound, was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and FRAP value. In-silico molecular informatics of HMGR enzyme type inhibition and pharmacokinetics data of the new compound was further evaluated through molecular docking and ADME-T studies. Further, in-vivo hypolipidemic property of FVBM extract and newly isolated compound was also analyzed in triton-WR 1339 induced rats. RESULTS: Thereby, we report the discovery of n-Octadecanyl-O-α-D-glucopyranosyl(6'→1″)-O-α-D-glucopyranoside (F18) as a novel HMG-CoA reductase inhibitor with strong antioxidant property. This inhibitor exhibited not only higher free radical scavenging activity but also marked HMG-CoA reductase inhibitory activity with an IC50 value of 84±2.8 ng/ml. This inhibitory activity concurred with kinetic study that showed inhibition constant (K i) of 84 ng/ml via an uncompetitive mode of inhibition. The inhibition was also corroborated by molecular docking analysis and in silico pharmacokinetics data. The in vivo study revealed that administration of FVBM extract (at higher dose, 100 mg/rat) and the inhibitor (1 mg/rat) to Triton WR-1339-induced hyperlipidemic rats significantly ameliorated the altered levels of plasma lipids and lipoproteins including hepatic HMG-CoA reductase activity; this effect was comparable to the effect of standard drug atorvastatin. CONCLUSIONS: The in vitro, in silico and in vivo results clearly demonstrated the antioxidant potential and therapeutic efficacy of the inhibitor as an alternate drug against hyperlipidemia.


Assuntos
Dissacarídeos/farmacologia , Ficus/química , Glicolipídeos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipolipemiantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Fracionamento Químico , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dissacarídeos/isolamento & purificação , Glicolipídeos/isolamento & purificação , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/isolamento & purificação , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
9.
BMC Geriatr ; 15: 44, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25887756

RESUMO

BACKGROUND: Constipation is highly prevalent in older adults and may be associated with greater frequency of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We investigated the prevalence of lower defecation frequency (DF) and risk factors (including AECOPD) associated with lower DF among hospitalized elderly patients. METHODS: We conducted a retrospective case-control study in a community hospital of Southeast Ohio. Adults aged 65 years or older admitted during 2004 and 2006 were reviewed (N = 1288). Patients were excluded (N = 212) if their length of stay was less than 3 days, discharge diagnosis of Clostridium difficile-associated diarrhea, death or ventilator- dependent respiratory failure during hospitalization. Lower DF was defined as either an average DF of 0.33 or less per day or no defecation in the first three days of hospitalization; cases (N = 406) and controls (N = 670) were included for the final analysis. RESULTS: Approximately 38% had lower DF in this patient population. Fecal soiling/smearing of at least two episodes was documented in 7% of the patients. With the adjustment of confounders, AECOPD (adjusted odds ratio [AOR] =1.47, 95% confidence interval [CI] =1.01-2.13) and muscle relaxant use (AOR =2.94; 95% CI =1.29-6.69) were significantly associated with lower DF. Supplementation of potassium and antibiotic use prior to hospitalization was associated with lower risk of lower DF. CONCLUSIONS: Approximately 38% of hospitalized older adults had lower DF. AECOPD and use of muscle relaxant were significantly associated with lower DF; while supplementation of potassium and antibiotic use were protective for lower DF risk after adjusting for other variables.


Assuntos
Defecação/fisiologia , Hospitalização/estatística & dados numéricos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Feminino , Humanos , Masculino , Razão de Chances , Doença Pulmonar Obstrutiva Crônica/terapia , Estudos Retrospectivos , Fatores de Risco
10.
Glycobiology ; 24(11): 979-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946787

RESUMO

Glycation is the result of covalent bonding of a free amino group of biological macromolecules with a reducing sugar, which results in the formation of a Schiff base that undergoes rearrangement, dehydration and cyclization to form a more stable Amadori product. The final products of nonenzymatic glycation of biomacromolecules like DNA, proteins and lipids are known as advanced glycation end products (AGEs). AGEs may be generated rapidly or over long times stimulated by distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. Both Schiff base and Amadori glycation products generate free radicals resulting in decline of antioxidant defense mechanisms and can damage cellular organelles and enzymes. This critical review primarily focuses on the mechanistic insight of glycation and the most probable route for the formation of glycation products and their therapeutic interventions. Furthermore, the prevention of glycation reaction using therapeutic drugs such as metformin, pyridoxamine and aminoguanidine (AG) are discussed with special emphasis on the novel concept of the bioconjugation of these drugs like, AG with gold nanoparticles (GNPs). At or above 10 mM concentration, AG is found to be toxic and therefore has serious health concerns, and the study warrants doing this novel bioconjugation of AG with GNPs. This approach might increase the efficacy of the AG at a reduced concentration with low or no toxicity. Using the concept of synthesis of GNPs with abovementioned drugs, it is assumed that toxicity of various drugs which are used at high doses can be minimized more effectively.


Assuntos
Glucose/metabolismo , Ciclização , DNA/química , Proteínas/química , RNA/química
11.
Phytother Res ; 28(6): 899-908, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24151056

RESUMO

The present study is initially intended to evaluate antioxidant and ß-hydroxy-ß-methylglutaryl-CoA reductase (HMGR) inhibitory property of Ficus virens Ait., first by in vitro analyses followed by a corroboratory molecular informatics study. Our results show that of all the sequentially extracted fraction of F. virens bark and leaves extract, F. virens bark methanol extract exhibits strong radical scavenging, antioxidant and oxidative DNA damage protective activity, which is well correlated with its total phenolic content. In addition, F. virens bark methanol extract, which is non-cytotoxic, significantly and non-covalently inhibit the HMGR activity (IC50 = 3.45 ± 0.45 µg/ml) in comparison with other extracts. The mechanistic aspect of this inhibition activity is authenticated by molecular docking study of bioactive compounds as revealed from gas chromatography-mass spectrometry data, with HMGR. The analysis for the first time indicates that quinic acid (ΔG: -8.11 kcal/mol) and paravastatin (ΔG: -8.22 kcal/mol) exhibit almost same binding energy, while other compounds also showed good binding energy, suggesting that quinic acid alone or in combination with other major bioactive compound is probably responsible for HMGR inhibitory property of the extract and plausibly can be used in in vivo system for the management, prevention, and alleviation of hypercholesterolemia as well as hypercholesterolemia-induced oxidative stress.


Assuntos
Antioxidantes/farmacologia , Ficus/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Extratos Vegetais/farmacologia , Células 3T3-L1 , Animais , Antioxidantes/química , Dano ao DNA/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Hipercolesterolemia , Camundongos , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Casca de Planta/química , Extratos Vegetais/química , Ácido Quínico/química
12.
J Gastroenterol Hepatol ; 28(10): 1678-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962084

RESUMO

BACKGROUND AND AIM: Angiogenesis plays a key role in growth, progression, and metastasis of various cancers. Vascular endothelial growth factor (VEGF) polymorphism has been associated with several cancers. Role of VEGF has not been reported in gallbladder cancer (GBC). Present study was designed to investigate the role of VEGF polymorphism in GBC and in other (benign) gallbladder diseases, that is chronic cholecystitis (CC) and xanthogranulomatous cholecystitis (XGC). METHODS: Blood samples were collected from 195 GBC, 140 CC, and 47 XGC patients and 300 normal healthy controls. VEGF polymorphisms were investigated using amplification refractory mutation system polymerase chain reaction for g.43737830A>G and g.3437A>C, polymerase chain reaction-restriction fragment length polymorphism for c.*237C>T, and g.43736418delTinsG amplified by polymerase chain reaction. RESULTS: At g.43737830A>G, GA genotype showed susceptibility (odds ratio [OR] = 1.65 and OR = 1.68) and GG genotype showed protective association (OR = 0.58 and OR = 0.50) with GBC and CC. Allele A of VEGF g.43737830A>G was risk associated with GBC and CC (OR = 1.48 and OR = 1.70), while G allele was risk protective for GBC and CC (OR = 0.67 and OR = 0.58). At g.3437A>C, genotype CA was risk protective for GBC (OR = 0.61). TT genotype of c.*237C>T was susceptible for GBC and CC (OR = 2.59 and OR = 3.48), while CC genotype was risk protective for GBC and CC (OR = 0.61 and OR = 0.34). T allele of c.*237C>T polymorphism was risk associated with GBC and CC (OR = 1.63 and OR = 2.90), while C allele was risk protective for GBC and CC (OR = 0.38 and OR = 0.28). Haplotype I-C-A-C was risk protective for GBC (OR = 0.27). CONCLUSION: The present study suggests that c.*237C>T and g.43737830A>G polymorphisms are useful markers of susceptibility to GBC.


Assuntos
Neoplasias da Vesícula Biliar/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Fator A de Crescimento do Endotélio Vascular/genética , Colecistite/genética , Doença Crônica , Feminino , Frequência do Gene , Genótipo , Granuloma/genética , Haplótipos , Humanos , Masculino , Risco , Xantomatose/genética
13.
Free Radic Res ; 57(4): 294-307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37459623

RESUMO

AbstractsBesides the profound role of proprotein convertase subtilisin/kexin type-9 (PCSK-9) in LDL-C regulation, its association with other metabolic complications cannot be disregarded. The co-existence of redox imbalance and inflammatory cascades has greatly reflected the etiology of hyperglycemia. Therefore, we studied the association of PCSK-9 with inflammation and oxidative stress biomarkers to predict its role in the prognosis of diabetes and its associated complications in the Indian population. This pilot study examined a total of n = 187 subjects: healthy controls (HC; n = 50), diabetic without complication (T2DM; n = 49), diabetic nephropathy (T2DM-N; n = 43), and diabetic dyslipidemic (T2DM-DL; n = 45) subjects. The relationship between circulatory PCSK-9 levels and inflammation and redox imbalance biomarkers has been explored. The significant positive association of elevated PCSK-9 level with the inflammatory (i.e. IL-1ß, IL-6, TNF-α, and CRP) and oxidative stress marker (i.e. XOD, CD, LOOH, and MDA) was observed in T2DM-N and T2DM-DL subjects. Whereas single regression analysis depicted that PCSK-9 was inversely associated with the FRAP and PON-1 in T2DM-N and T2DM-DL subjects. Furthermore, no significant correlation was detected in both T2DM and HC subjects. We found a significant relationship between these prognostic biomarkers with an elevated level of PCSK-9 in T2DM-N and T2DM-DL subjects. PCSK-9 is a nontraditional biomarker in diabetes that may help identify patients at risk of developing secondary complications of diabetes in the Indian population. However, further large cohort validation studies are needed.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Dislipidemias , Humanos , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Oxirredução , Projetos Piloto , Prognóstico , População do Sul da Ásia/genética , Dislipidemias/etiologia , Dislipidemias/genética , Dislipidemias/metabolismo
14.
Nat Prod Res ; : 1-10, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37842787

RESUMO

The present study intended to divulge the potential role of garlic-derived organosulfur compounds (OSCs) in targeting PCSK-9 and averting its interaction with the EGF-A portion of LDL-R via in-vitro and in-silico analysis. Our in-silico screening data showed that 3-(Propylsulfinyl)-L-alanine (PSA), S-Ethyl-L-cysteine (SEC), alliin, and S-Allyl-L-cysteine (SAC) exhibited higher binding energy (-7.05, -7.00, -6.65, and -6.31 Kcal/mol, respectively) against PCSK-9, among other selected OSCs. Further, the protein-protein interaction study of PCSK-9-OSCs-complex with EGF-A demonstrated a similar binding pattern with E-total values ranging from -430.01 to -405.6 Kcal/mol. These results were further validated via in-vitro analysis which showed that SEC, SAC, and diallyl trisulphide (DAT) exhibited the lowest IC50 values of 4.70, 5.26, and 5.29 µg/mL, respectively. In conclusion, the presented data illustrated that SEC, SAC, and DAT were the best inhibitors of PCSK-9 activity and may have the potential to improve the LDL-R function and lower the circulatory LDL-C level.

15.
Biotechnol Genet Eng Rev ; : 1-17, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988185

RESUMO

The antioxidant and antiglycation activities of the Ficus leaf extracts were evaluated using in vitro assays. The antioxidant activity was determined using the α, α-diphenyl-ß-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assays. In vitro ferric reducing activity was evaluated using the ferric reducing antioxidant power assay. The antiglycation potential of the extract was evaluated using dinitrophenylhydrazine, thiobarbituric acid and protein thiol assays. The inhibition of the formation of advanced glycation end products (AGEs) was detected using AGE-specific fluorescence with a fluorescence spectrophotometer. This study was aimed at investigating the potential of Ficus palmata Forssk. leaf extracts, which have abundant bioactive constituents, including polyphenols and flavonoids, in inhibiting glycation and cancer. The results show that the aqueous and methanolic Ficus leaf extracts are rich in phenolic and flavonoid compounds. Both extracts showed potent antioxidant activities. Furthermore, the methanolic extract showed antiglycation activities, as assessed using an in vitro model of bovine serum albumin glycation with D-ribose. The polyphenol- and flavonoid-rich Ficus leaf extracts exhibit antiglycation, chemopreventive and antioxidant activities and have potential for use in the treatment of diseases, such as cancer, which involve oxidative and glycative impairment of cellular proteins.

16.
Arch Physiol Biochem ; 129(4): 831-846, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33508970

RESUMO

The current in-vivo study was premeditated to uncover the protective role of ezetimibe (EZ) against advanced glycation endproducts (AGEs)-related pathologies in experimental diabetes. Our results showed that EZ markedly improved the altered biochemical markers of diabetes mellitus (DM) (FBG, HbA1c, insulin, microalbumin, and creatinine) and cardiovascular disease (in-vivo lipid/lipoprotein level and hepatic HMG-CoA reductase activity) along with diminished plasma carboxymethyl-lysine (CML) and renal fluorescent AGEs level. Gene expression study revealed that EZ significantly down-regulated the renal AGEs-receptor (RAGE), nuclear factor-κB (NFκB-2), transforming growth factor-ß (TGF-ß1), and matrix metalloproteinase-2 (MMP-2) mRNA expression, however, the neuropilin-1 (NRP-1) mRNA expression was up-regulated. In addition, EZ also maintained the redox status via decreasing the lipid peroxidation and protein-bound carbonyl content (CC) and increasing the activity of high-density lipoprotein (HDL)-associated-paraoxonase-1 (PON-1) and renal antioxidant enzymes as well as also protected renal histopathological features. We conclude that EZ exhibits antidiabetic and reno-protective properties in diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Ezetimiba/farmacologia , Ezetimiba/uso terapêutico , Produtos Finais de Glicação Avançada/genética , Produtos Finais de Glicação Avançada/metabolismo , Reação de Maillard , Metaloproteinase 2 da Matriz/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor para Produtos Finais de Glicação Avançada/efeitos dos fármacos
17.
EXCLI J ; 21: 47-76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221836

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.

18.
Int J Biol Macromol ; 213: 663-674, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35660040

RESUMO

The robust use of osmolytes (i.e., polyols and sugars) in the key therapeutic regimens/formulations has questioned their impact beyond the stability of therapeutic proteins as these osmolytes trigger structural alterations into proteins including misfolding and subsequent aggregation into amyloid fibrils. Therefore, the current study is the first to delineate the inhibitory effect of carvacrol (CRV) on the carbonyl osmolyte-induced aggregation as well as structural alterations to the bovine serum albumin (BSA) via a set of physicochemical as well as artificial intelligence (AI)-based molecular docking studies. Our initial findings from physicochemical investigations revealed that CRV exhibits substantial protection to BSA under carbonyl osmolyte stress as evident by the compromised hyperchromicity, Schiff's bases, carbonyl and hydroxymethyl furfural content, reduced fluorescent signals, low Rayleigh scattering and prevention of covalent modifications at Lys and Arg residues. The protection against aggregate formation by CRV was further confirmed through the reduced amyloid-specific congo red absorbance as well as fluorescent signals recorded after adding the fibril-specific extrinsic fluorophore probes (i.e., ThT and ANS). The AI-based molecular docking analysis further revealed that CRV (ΔG: -4.96 kcal/mol) competes with d-fructose (ΔG: -4.40 kcal/mol) to mask the Lys and Arg residues to restrict the osmolyte-mediated protein modifications. In conclusion, CRV exhibits substantial protective impact against carbonyl osmolyte-induced structural alterations and protein misfolding and aggregation.


Assuntos
Inteligência Artificial , Albumina Sérica , Amiloide/química , Cimenos , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química
19.
Oxid Med Cell Longev ; 2021: 7086951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712386

RESUMO

The current study is aimed at studying the inhibitory effect of glycyrrhizic acid (GA) on D-ribose-mediated protein glycation via various physicochemical analyses and in silico approaches. Being a potent free radical scavenger and a triterpenoid saponin, GA plays a vital role in diminishing the oxidative stress and thus could be an effective inhibitor of the nonenzymatic glycation process. Our data showed that varying concentrations of GA inhibited the in vitro BSA-AGEs via inhibiting the formation of fructosamines, fluorescent AGEs, scavenging protein carbonyl and hydroxymethyl furfural (HMF) content, and protection against D-ribose-induced modification of BSA as evident by increased free Arg and Lys residues in GA-treated Gly-BSA samples. Moreover, GA also attenuated D-ribose-induced alterations in the secondary structure of BSA by protecting the α-helix and ß-sheet conformers and amide-I band delocalization. In addition, GA attenuated the modification in ß-cross amyloid structures of BSA and in silico molecular interaction study too showed strong binding of GA with higher number of Lys and Arg residues of BSA and binding energy (ΔG) of -8.8 Kcal/mol, when compared either to reference standard aminoguanidine (AG)-BSA complex (ΔG: -4.3 Kcal/mol) or D-ribose-BSA complex (ΔG: -5.2 Kcal/mol). Therefore, GA could be a new and favorable inhibitor of the nonenzymatic glycation process that ameliorates AGEs-related complications via attenuating the AGE formation and glycation-induced multiple protein modifications with a reduced risk of adverse effects on protein structure and functionality; hence, it could be investigated at further preclinical settings for the treatment and management of diabetes and age-associated complications.


Assuntos
Antioxidantes/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Ácido Glicirrízico/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Carbonilação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ribose/metabolismo , Soroalbumina Bovina/metabolismo , Amiloide/metabolismo , Glicosilação
20.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577637

RESUMO

Alzheimer's disease (AD) is a progressive neurological disorder that affects 50 million people. Despite this, only two classes of medication have been approved by the FDA. Therefore, we have planned to develop therapeutics by multitarget approach. We have explored the library of 2029 natural product-like compounds for their multi-targeting potential against AD by inhibiting AChE, BChE (cholinergic pathway) MAO-A, and MOA-B (oxidative stress pathway) through in silico high-throughput screening and molecular dynamics simulation. Based on the binding energy of these target enzymes, approximately 189 compounds exhibited a score of less than -10 kcal/mol against all targets. However, none of the control inhibitors exhibited a binding affinity of less than -10 kcal/mol. Among these, the top 10 hits of compounds against all four targets were selected for ADME-T analysis. As a result, only F0850-4777 exhibited an acceptable range of physicochemical properties, drug-likeness, pharmacokinetics, and suitability for BBB permeation with high GI-A and non-toxic effects. The molecular dynamics study confirmed that F0850-4777 remained inside the binding cavity of targets in a stable conformation throughout the simulation and Prime-MM/GBSA study revealed that van der Waals' energy (ΔGvdW) and non-polar solvation or lipophilic energy (ΔGSol_Lipo) contribute favorably towards the formation of a stable protein-ligand complex. Thus, F0850-4777 could be a potential candidate against multiple targets of two pathophysiological pathways of AD and opens the doors for further confirmation through in vitro and in vivo systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA