Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35808224

RESUMO

In the era of heterogeneous 5G networks, Internet of Things (IoT) devices have significantly altered our daily life by providing innovative applications and services. However, these devices process large amounts of data traffic and their application requires an extremely fast response time and a massive amount of computational resources, leading to a high failure rate for task offloading and considerable latency due to congestion. To improve the quality of services (QoS) and performance due to the dynamic flow of requests from devices, numerous task offloading strategies in the area of multi-access edge computing (MEC) have been proposed in previous studies. Nevertheless, the neighboring edge servers, where computational resources are in excess, have not been considered, leading to unbalanced loads among edge servers in the same network tier. Therefore, in this paper, we propose a collaboration algorithm between a fuzzy-logic-based mobile edge orchestrator (MEO) and state-action-reward-state-action (SARSA) reinforcement learning, which we call the Fu-SARSA algorithm. We aim to minimize the failure rate and service time of tasks and decide on the optimal resource allocation for offloading, such as a local edge server, cloud server, or the best neighboring edge server in the MEC network. Four typical application types, healthcare, AR, infotainment, and compute-intensive applications, were used for the simulation. The performance results demonstrate that our proposed Fu-SARSA framework outperformed other algorithms in terms of service time and the task failure rate, especially when the system was overloaded.


Assuntos
Internet das Coisas , Algoritmos , Lógica Fuzzy , Aprendizagem , Recompensa
2.
J Cloud Comput (Heidelb) ; 9(1): 66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33532167

RESUMO

In the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA