Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19799, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957144

RESUMO

Mobile robots are increasingly employed in today's environment. Perceiving the environment to perform a task plays a major role in the robots. The service robots are wisely employed in the fully (or) partially known user's environment. The exploration and exploitation of the unknown environment is a tedious task. This paper introduces a novel Trimmed Q-learning algorithm to predict interesting scenes via efficient memorability-oriented robotic behavioral scene activity training. The training process involves three stages: online learning and short-term and long-term learning modules. It is helpful for autonomous exploration and making wiser decisions about the environment. A simplified three-stage learning framework is introduced to train and predict interesting scenes using memorability. A proficient visual memory schema (VMS) is designed to tune the learning parameters. A role-based profile arrangement is made to explore the unknown environment for a long-term learning process. The online and short-term learning frameworks are designed using a novel Trimmed Q-learning algorithm. The underestimated bias in robotic actions must be minimized by introducing a refined set of practical candidate actions. Finally, the recalling ability of each learning module is estimated to predict the interesting scenes. Experiments conducted on public datasets, SubT, and SUN databases demonstrate the proposed technique's efficacy. The proposed framework has yielded better memorability scores in short-term and online learning at 72.84% and in long-term learning at 68.63%.

2.
J Imaging ; 8(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286352

RESUMO

Hypertensive retinopathy severity classification is proportionally related to tortuosity severity grading. No tortuosity severity scale enables a computer-aided system to classify the tortuosity severity of a retinal image. This work aimed to introduce a machine learning model that can identify the severity of a retinal image automatically and hence contribute to developing a hypertensive retinopathy or diabetic retinopathy automated grading system. First, the tortuosity is quantified using fourteen tortuosity measurement formulas for the retinal images of the AV-Classification dataset to create the tortuosity feature set. Secondly, a manual labeling is performed and reviewed by two ophthalmologists to construct a tortuosity severity ground truth grading for each image in the AV classification dataset. Finally, the feature set is used to train and validate the machine learning models (J48 decision tree, ensemble rotation forest, and distributed random forest). The best performance learned model is used as the tortuosity severity classifier to identify the tortuosity severity (normal, mild, moderate, and severe) for any given retinal image. The distributed random forest model has reported the highest accuracy (99.4%) compared to the J48 Decision tree model and the rotation forest model with minimal least root mean square error (0.0000192) and the least mean average error (0.0000182). The proposed tortuosity severity grading matched the ophthalmologist's judgment. Moreover, detecting the tortuosity severity of the retinal vessels', optimizing vessel segmentation, the vessel segment extraction, and the created feature set have increased the accuracy of the automatic tortuosity severity detection model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA