Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 290(15): 9465-77, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713064

RESUMO

K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling.


Assuntos
Membrana Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/química , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fluidez de Membrana , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Modelos Químicos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Serina/química , Serina/genética , Serina/metabolismo , Ressonância de Plasmônio de Superfície
2.
Proteins ; 84(2): 193-200, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26650755

RESUMO

Multiple genes in Mycobacterium tuberculosis (Mtb) are regulated by copper including socAB (small orf induced by copper A and B), which is induced by copper and repressed by RicR (regulated in copper repressor). socA and socB encode hypothetical proteins of 61 and 54 amino acids, respectively. Here, we use biophysical and computational methods to evaluate the SocB structure. We find that SocB lacks evidence for secondary structure, with no thermal cooperative unfolding event, according to circular dichroism measurements. 2D NMR spectra similarly exhibit hallmarks of a disordered structural state, which is also supported by analyzing SocB diffusion. Altogether, these findings suggest that by itself SocB is intrinsically disordered. Interestingly, SocB interacts with a synthetic phospholipid bilayer and becomes helical, which suggests that it may be membrane-associated.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana/química , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular
3.
Biophys J ; 109(12): 2602-2613, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682817

RESUMO

Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible.


Assuntos
Domínio Catalítico , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo , Sequência de Aminoácidos , Biocatálise , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica
4.
J Biol Chem ; 287(17): 14192-200, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22378781

RESUMO

Phosphorylation of signal transducer and activator of transcription 3 (STAT3) on a single tyrosine residue in response to growth factors, cytokines, interferons, and oncogenes activates its dimerization, translocation to the nucleus, binding to the interferon γ (gamma)-activated sequence (GAS) DNA-binding site and activation of transcription of target genes. STAT3 is constitutively phosphorylated in various cancers and drives gene expression from GAS-containing promoters to promote tumorigenesis. Recently, roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in maintenance of heterochromatin stability. However, the mechanisms underlying U-STAT3 binding to DNA has not been fully investigated. Here, we explore STAT3-DNA interactions by atomic force microscopy (AFM) imaging. We observed that U-STAT3 molecules bind to the GAS DNA-binding site as dimers and monomers. In addition, we observed that U-STAT3 binds to AT-rich DNA sequence sites and recognizes specific DNA structures, such as 4-way junctions and DNA nodes, within negatively supercoiled plasmid DNA. These structures are important for chromatin organization and our data suggest a role for U-STAT3 as a chromatin/genome organizer. Unexpectedly, we found that a C-terminal truncated 67.5-kDa STAT3 isoform recognizes single-stranded spacers within cruciform structures that also have a role in chromatin organization and gene expression. This isoform appears to be abundant in the nuclei of cancer cells and, therefore, may have a role in regulation of gene expression. Taken together, our data highlight novel mechanisms by which U-STAT3 binds to DNA and supports U-STAT3 function as a transcriptional activator and a chromatin/genomic organizer.


Assuntos
Cromatina/química , DNA/química , Fator de Transcrição STAT3/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Masculino , Microscopia de Força Atômica/métodos , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Frações Subcelulares
5.
J Phys Chem B ; 110(1): 170-3, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16471516

RESUMO

The role of the central atom X in the structure and reactivity of di-Ru-substituted gamma-Keggin polyoxometalates (POMs), gamma-[(Xn+O4)RuIII2(OH)2(MFM)10O32](8-n)-), where MFM = Mo and W, and X = AlIII, SiIV, PV, and SVI., was computationally investigated. It was shown that for both MFM = Mo and W the nature of X is crucial in determining the lower lying electronic states of the polyoxoanions, which in turn likely significantly impacts their reactivity. For the electropositive X = AlIII, the ground state is a low-spin state, while for the more electronegative X = SVI the ground state is a high-spin state. In other words, the heteroatom X can be an "internal switch" for defining the ground electronic states of the gamma-M2-Keggin POMs. The obtained trends, in general, are less pronounced for MFM = Mo than for W. On the basis of the comparison of the calculated energy gaps between low-spin and high-spin states of polytungstates and polymolybdates, we predict that the gamma-M2-Keggin polytungstates could be more reactive than their polymolybdate analogues. For purposes of experimental verification the computationally predicted and evaluated polytungstate gamma-[(SiO4)RuIII2(OH)2(OH2)2W10O32]4- was prepared and characterized.

6.
Structure ; 23(7): 1325-35, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26051715

RESUMO

Ras proteins recruit and activate effectors, including Raf, that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, activation of Raf requires its dimerization. It has been suspected that dimeric Ras may promote dimerization and activation of Raf. Here, we show that the GTP-bound catalytic domain of K-Ras4B, a highly oncogenic splice variant of the K-Ras isoform, forms stable homodimers. We observe two major dimer interfaces. The first, highly populated ß-sheet dimer interface is at the Switch I and effector binding regions, overlapping the binding surfaces of Raf, PI3K, RalGDS, and additional effectors. This interface has to be inhibitory to such effectors. The second, helical interface also overlaps the binding sites of some effectors. This interface may promote activation of Raf. Our data reveal how Ras self-association can regulate effector binding and activity, and suggest that disruption of the helical dimer interface by drugs may abate Raf signaling in cancer.


Assuntos
Guanosina Trifosfato/química , Proteínas Proto-Oncogênicas p21(ras)/química , Domínio Catalítico , Humanos , Cinética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
7.
J Vis Exp ; (78)2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23979559

RESUMO

Quantitative characterization of protein interactions is essential in practically any field of life sciences, particularly drug discovery. Most of currently available methods of KD determination require access to purified protein of interest, generation of which can be time-consuming and expensive. We have developed a protocol that allows for determination of binding affinity by microscale thermophoresis (MST) without purification of the target protein from cell lysates. The method involves overexpression of the GFP-fused protein and cell lysis in non-denaturing conditions. Application of the method to STAT3-GFP transiently expressed in HEK293 cells allowed to determine for the first time the affinity of the well-studied transcription factor to oligonucleotides with different sequences. The protocol is straightforward and can have a variety of application for studying interactions of proteins with small molecules, peptides, DNA, RNA, and proteins.


Assuntos
Técnicas de Química Analítica/métodos , Proteínas/química , Proteínas/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA