Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell Biochem ; 479(3): 693-705, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37166541

RESUMO

Over the past few years, the prevalence of neurodegenerative diseases (NDD) has increased dramatically. The community health system is burdened by the high healthcare costs associated with NDD. Superoxide dismutase (SOD) is a type of metalloenzyme that possesses a distinct characteristic of protecting the body from oxidative stress through antioxidants. In this way, SOD supplementation may activate the endogenous antioxidant mechanism in various pathological conditions and could be used to neutralize free radical excess. Several factors are responsible for damaging DNA and RNA in the body, including the overproduction of reactive species, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive ROS/RNS have deleterious effects on mitochondria and their metabolic processes, mainly through increased mitochondrial proteins, lipids and DNA oxidation. Studies have shown that oxidative stress is implicated in the etiology of many diseases, including NDD. It is thought that anti-inflammatory compounds, particularly phytochemicals, can interfere with these pathways and regulate inflammation. Extensive experimental and clinical research has proven that curcumin (Cur) has anti-inflammatory and anti-neurologic properties. In this review, we have compiled the available data on Cur's anti-inflammatory properties, paying special attention to its therapeutic impact on NDD through SOD.


Assuntos
Curcumina , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , DNA/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
2.
Phytother Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899632

RESUMO

A variety of mechanisms and drugs have been shown to attenuate cardiovascular disease (CVD) onset and/or progression. Recent researchers have identified a potential role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in modulating lipid metabolism and reducing plasma low density lipoprotein (LDL) levels. PCSK9 is the central protein in the metabolism of LDL cholesterol (LDL-C) owing to its major function in LDL receptor (LDLR) degradation. Due to the close correlation of cardiovascular disease with lipid levels, many in vivo and in vitro investigations are currently underway studying the physiological role of PCSK9. Furthermore, many studies are actively investigating the mechanisms of various compounds that influence lipid associated-disorders and their associated cardiovascular diseases. PCSK9 inhibitors have been shown to have significant impact in the prevention of emerging cardiovascular diseases. Natural products can effectively be used as PCSK9 inhibitors to control lipid levels through various mechanisms. In this review, we evaluate the role of phytochemicals and natural products in the regulation of PCSK9, and their ability to prevent cardiovascular diseases. Moreover, we describe their mechanisms of action, which have not to date been delineated.

3.
Adv Exp Med Biol ; 1412: 339-355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378776

RESUMO

Since the outbreak of the COVID-19 pandemic in December 2019, scientists worldwide have been looking for a way to control this global threat. One of the most successful and practical solutions has been the development and worldwide distribution of the COVID-19 vaccines. However, in a small percentage of cases, vaccination can lead to de novo development or exacerbation of immune or inflammatory conditions such as psoriasis. Due to the immunomodulatory nature of this disease, people affected by psoriasis and other related skin conditions have been encouraged to receive COVID-19 vaccines, which are immunomodulatory by nature. As such, dermatological reactions are possible in these patients, and cases of onset, exacerbation or change in the type of psoriasis have been observed in patients administered with COVID-19 vaccines. Considering the rarity and minor nature of some of these cutaneous reactions to COVID-19 vaccination, there is a general consensus that the benefits of vaccination outweigh the potential risks of experiencing such side effects. Nevertheless, healthcare workers who administer vaccines should be made aware of the potential risks and advise recipients accordingly. Furthermore, we suggest careful monitoring for potentially deleterious autoimmune and hyperinflammatory responses using point-of-care biomarker monitoring.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Psoríase , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Pandemias , Vacinação/efeitos adversos
4.
J Basic Microbiol ; 63(9): 1030-1048, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442766

RESUMO

The oral antimicrobial and cytotoxic properties of green synthesized novel titanium dioxide nanoparticles (TiO2 NPs) using Iranian propolis extracts were investigated on oral bacteria and fibroblast cells. In this study, propolis was sampled, and alcoholic extracts were prepared. The TiO2 NPs were biosynthesized using propolis extracts. The synthesized TiO2 NPs were characterized by scanning electron microscope (SEM), X-ray diffraction analysis, energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering, ultraviolet-visible (UV-Vis), transmission electron microscope, Brunauer-Emmett-Teller, and zeta potential. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), minimal inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration, biofilm formation, and degradation tests were studied to clarify the oral antimicrobial properties of green synthesized TiO2  NPs. According to the FTIR analysis, the propolis extract contained flavonoids and phenolic compounds in addition to TiO2 NPs. Additionally, UV-Vis revealed that intense bands had formed NPs. EDX spectra and SEM images revealed that the stabilizing agent was in perfect quasi-spherical shapes around 21 nm. An EDX spectrum was used to verify the presence of titanium and oxygen. There were no significant cytotoxicity effects. The antibacterial results showed that Pro1TiO2 (Khalkhal sample) had better effects than Pro2TiO2 (Gilan sample) and TiO2 NPs. The present study presents a new process for synthesizing TiO2 NPs from propolis extracts with less toxic effects and user-friendly, eco-friendly, and economical materials. Pro1TiO2 NPs may be considered the best candidate for clinical application.


Assuntos
Anti-Infecciosos , Ascomicetos , Nanopartículas Metálicas , Nanopartículas , Própole , Própole/farmacologia , Irã (Geográfico) , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química , Difração de Raios X
5.
Cell Mol Biol (Noisy-le-grand) ; 68(10): 141-160, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37114257

RESUMO

A mouth infection can also affect the teeth, the mouth tissues, and any other areas involved in the mouth. Biofilms formed by bacteria are the primary cause of mouth infections and other infectious diseases caused by bacteria. The most common dental problem is an infection or disease within the mouth. The term chronic infection is sometimes used to describe this type of problem. There is also the possibility that these discomforts may occur due to the presence of bacteria in plaque, which is responsible for causing inflammation throughout the body as a result of bacterial infection in the mouth. In many cases, antibiotics serve as a first-line treatment for mouth infections, especially those caused by bacteria, most commonly treated by antibiotics. It is common for antibiotics to be used orally, and they are absorbed into the body through their metabolism in the liver and kidneys. Antibiotic resistance, which is primarily caused by misuse and overuse of antibiotics, is also one of the most significant public health crises of the 21st century. With the help of new drug delivery systems, antibacterial resistance can be decreased in humans to maintain the effectiveness of antibiotics when they are used more frequently. By directly delivering antibiotics to damaged tissues and reducing undesirable side effects when administered systemically, antibiotic delivery systems enhance the efficiency of antibiotics in specific zones. Furthermore, several new delivery systems are being explored in an attempt to improve pharmacokinetics and pharmacodynamics, reduce bacterial resistance, and decrease dose times. As a result, antibiotics were delivered to tissues and biological fluids using an innovative delivery system. Research on some of the most prevalent dental diseases provides updates on antibiotic delivery systems that reduce antibiotic resistance. This review overviews oral infectious diseases, antibiotics effects, and the different delivery systems of these therapeutic approaches.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos , Infecções Bacterianas/tratamento farmacológico , Inflamação/tratamento farmacológico , Farmacorresistência Bacteriana
6.
Prostaglandins Other Lipid Mediat ; 157: 106587, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517113

RESUMO

Neurological disorders result in disability and morbidity. Neuroinflammation is a key factor involved in progression or resolution of a series of neurological disorders like Huntington disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), Spinal Cord Injury (SCI), and Seizure. Thereby, anti-inflammatory drugs have been developed to improve the neurodegenerative impairments. Licofelone is an approved osteoarthritis drug that inhibits both the COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways. Licofelone has pain-relieving and anti-inflammatory effects and it was shown to have neuroprotective properties in the central nervous system, which is implicated in its regulatory effect on the COX/5-LOX pathway, inflammatory cytokines, and immune responses. In this study, we briefly review the various features of neurological disorders and the function of COX/LOX in their flare up and current pharmacological products for their management. Moreover, this review attempts to summarize potential therapeutics that target the immune responses within the central nervous system. A better understanding of the interactions between Licofelone and the nervous systems will be crucial to demonstrate the possible efficacy of Licofelone in neurological disorders.


Assuntos
Inibidores de Lipoxigenase , Doenças do Sistema Nervoso , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Pirróis
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1433-1454, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37736835

RESUMO

Cholestasis describes bile secretion or flow impairment, which is clinically manifested with fatigue, pruritus, and jaundice. Neutrophils play a crucial role in many diseases such as cholestasis liver diseases through mediating several oxidative and inflammatory pathways. Data have been collected from clinical, in vitro, and in vivo studies published between 2000 and December 2021 in English and obtained from the PubMed, Google Scholar, Scopus, and Cochrane libraries. Although nitric oxide plays an important role in the pathogenesis of cholestatic liver diseases, excessive levels of NO in serum and affected tissues, mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme, can exacerbate inflammation. NO induces the inflammatory and oxidative processes, which finally leads to cell damage. We found that natural products such as baicalin, curcumin, resveratrol, and lycopene, as well as chemical likes ursodeoxycholic acid, dexamethasone, rosuvastatin, melatonin, and sildenafil, are able to markedly attenuate the NO production and iNOS expression, mainly through inducing the nuclear factor κB (NF-κB), Janus kinase and signal transducer and activator of transcription (JAK/STAT), and toll like receptor-4 (TLR4) signaling pathways. This study summarizes the latest scientific data about the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the role of NO in cholestasis liver diseases. Literature review directed us to propose that suppression of NO and its related pathways could be a therapeutic option for preventing or treating cholestatic liver diseases.


Assuntos
Colestase , Hepatopatias , Humanos , Óxido Nítrico/metabolismo , Colestase/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Hepatopatias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fígado/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38361356

RESUMO

BACKGROUND: Cinnamic acid, an active compound in cinnamon spp., has anti-inflammatory and antioxidant characteristics and is favorable in managing inflammatory bowel diseases. OBJECTIVES: Evaluate cinnamic acid's effects on colitis in rats. METHODS: To induce colitis in experimental rats, excluding the sham group, a 4% intrarectal solution of acetic acid was administered. The rats were then given oral doses of cinnamic acid at 30, 45, and 90 mg/kg for two days. The animals were assessed for macroscopic and microscopic changes, and the levels of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and myeloperoxidase (MPO) were measured using Eliza kits. Additionally, real-time PCR was performed to examine the gene level of toll-like receptor 4 (TLR-4) in the colon. RESULTS: Effective reduction of inflammation in acetic acid-induced colitis was achieved through Cinnamic acid administration at doses of 45 and 90 mg/kg. The decrease was achieved by inhibiting the activities of TNF-α, IL-6, and MPO while downregulating the expression of TLR-4. It is important to note that macroscopic and microscopic evaluations were significant in determining the effectiveness of cinnamic acid in reducing inflammation. CONCLUSION: Downregulation of inflammatory cytokines and TLR-4 expression may contribute to cinnamic acid's anti-inflammatory effect.


Assuntos
Ácido Acético , Anti-Inflamatórios , Cinamatos , Colite , Modelos Animais de Doenças , Peroxidase , Receptor 4 Toll-Like , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Interleucina-6/metabolismo , Peroxidase/metabolismo , Ratos Wistar , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Curr Dev Nutr ; 8(5): 102162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38800633

RESUMO

The health benefits of fermenting plant-derived products remain an underexplored domain. Plants and other natural products serve as medicinal agents when consumed as part of our diets, and the role of microorganisms in fermentation garners significant scientific interest. The present narrative review investigates the effects of fermentation of substances such as plants, algae, and fungi on their therapeutic and related purposes. Among the microorganisms used in fermentation, lactic acid bacteria are often linked to fermented products, particularly dairy and animal-based ones, and take center stage. These microorganisms are adept at synthesizing vitamins, active peptides, minerals, proteinases, and enzymes. Plant-derived fermented products are a significant source of active peptides, phytochemicals, flavonoids, and bioactive molecules with a profound impact on human health. They exhibit anti-inflammatory, anticarcinogenic, antiatherosclerotic, antidiabetic, antimicrobial, and antioxidant properties, the effects being substantiated by experimental studies. Clinical investigations underscore their effectiveness in managing diverse health conditions. Various studies highlight a synergy between microorganisms and plant-based materials, with fermentation as an innovative method for daily food preparation or a treatment option for specific ailments. These promising findings highlight the need for continued scientific inquiry into the impact of fermentation-derived products in clinical settings. Clinical observations to date have offered valuable insights into health improvement for various disorders. This current narrative review explores the impact of natural and plant-originated fermented products on health and well-being.

10.
Mol Neurobiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427213

RESUMO

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.

11.
Cell Transplant ; 33: 9636897241236030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494898

RESUMO

The conventional approach for addressing bone defects and stubborn non-unions typically involves the use of autogenous bone grafts. Nevertheless, obtaining these grafts can be challenging, and the procedure can lead to significant morbidity. Three primary treatment strategies for managing bone defects and non-unions prove resistant to conventional treatments: synthetic bone graft substitutes (BGS), a combination of BGS with bioactive molecules, and the use of BGS in conjunction with stem cells. In the realm of synthetic BGS, a multitude of biomaterials have emerged for creating scaffolds in bone tissue engineering (TE). These materials encompass biometals like titanium, iron, magnesium, and zinc, as well as bioceramics such as hydroxyapatite (HA) and tricalcium phosphate (TCP). Bone TE scaffolds serve as temporary implants, fostering tissue ingrowth and the regeneration of new bone. They are meticulously designed to enhance bone healing by optimizing geometric, mechanical, and biological properties. These scaffolds undergo continual remodeling facilitated by bone cells like osteoblasts and osteoclasts. Through various signaling pathways, stem cells and bone cells work together to regulate bone regeneration when a portion of bone is damaged or deformed. By targeting signaling pathways, bone TE can improve bone defects through effective therapies. This review provided insights into the interplay between cells and the current state of bioceramics in the context of bone regeneration.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Alicerces Teciduais , Regeneração Óssea , Engenharia Tecidual/métodos , Durapatita
12.
Vet Med Sci ; 9(4): 1833-1847, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196179

RESUMO

Cancer is a leading cause of death worldwide, but advances in treatment, early detection, and prevention have helped to reduce its impact. To translate cancer research findings into clinical interventions for patients, appropriate animal experimental models, particularly in oral cancer therapy, can be helpful. In vitro experiments using animal or human cells can provide insight into cancer's biochemical pathways. This review discusses the various animal models used in recent years for research and clinical intervention in oral cancer, along with their advantages and disadvantages. We highlight the advantages and limitations of the used animal models in oral cancer research and therapy by searching the terms of animal models, oral cancer, oral cancer therapy, oral cancer research, and animals to find all relevant publications during 2010-2023. Mouse models, widely used in cancer research, can help us understand protein and gene functions in vivo and molecular pathways more deeply. To induce cancer in rodents, xenografts are often used, but companion animals with spontaneous tumours are underutilized for rapid advancement in human and veterinary cancer treatments. Like humans with cancer, companion animals exhibit biological behaviour, treatment responses, and cytotoxic agent responses similar to humans. In companion animal models, disease progression is more rapid, and the animals have a shorter lifespan. Animal models allow researchers to study how immune cells interact with cancer cells and how they can be targeted specifically. Additionally, animal models have been extensively used in research on oral cancers, so researchers can use existing knowledge and tools to better understand oral cancers using animal models.


Assuntos
Antineoplásicos , Neoplasias Bucais , Animais , Humanos , Camundongos , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Neoplasias Bucais/veterinária , Neoplasias Bucais/tratamento farmacológico
13.
Mini Rev Med Chem ; 23(15): 1575-1589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733245

RESUMO

BACKGROUND: Viral hemorrhagic fevers (VHFs) are a group of clinical syndromes caused by several different RNA virus families, including several members of the arenavirus, bunyavirus, filovirus, and flavivirus families. VHFs have high mortality rates, and they have been associated with vascular permeability, malaise, fever, variable degrees of hemorrhage, reduced plasma volume, and coagulation abnormalities. To treat such conditions, antigen-presenting cells target dysregulated immune reactions and productive infections. Monocytes and macrophages produce inflammatory cytokines that damage adaptive immunity, while infected dendritic cells fail to mature correctly, compromising adaptive immunity. Inflammation and uncontrolled virus replication are associated with vascular leakage and coagulopathy. OBJECTIVE: VHF infects both humans and animals and if not treated, causes hemorrhagic manifestations and lethal platelet dysfunction. Besides pharmacological and immunological solutions, the intervention of natural products for VHF management is of great interest. In this review, we gathered current data about the effectiveness of natural products for VHF management. METHODS: Data were extracted from Scopus, Google Scholar, PubMed, and Cochrane library in terms of clinical and animal studies published in English between 1981 to February 2022. RESULTS: Several plants from diverse families and species were identified with antiviral activity against VHF. The combination of botanical therapeutics and multitarget synergistic therapeutic effects is now the widely accepted explanation for the treatment of VHF. Most of these herbal therapeutics have shown promising immunomodulatory effects in vivo and in vitro VHF models. They can probably modulate the immune system in VHF-infected subjects mainly by interfering with certain inflammatory mediators involved in various infectious diseases. CONCLUSION: Natural, in particular, herbal sources can be valuable for the management of various VHFs and their related complications.


Assuntos
Arenavirus , Vírus da Dengue , Febres Hemorrágicas Virais , Vírus de RNA , Humanos , Animais , Febres Hemorrágicas Virais/tratamento farmacológico , Citocinas
14.
Inflammation ; 46(5): 1709-1724, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37233919

RESUMO

Licofelone is a dual Cyclooxygenase 1,2 (COX1,2)/5-lipoxygenase) 5-LOX (inhibitor with analgesic and anti-inflammatory effects with possible functions on inflammatory bowel disease (IBD), which is a chronic recurrent condition with no particular treatment. This study evaluated the anti-inflammatory effects of licofelone on acetic acid-induced colitis in rats. Ten groups of male Wistar rats (n = 6) were used. Sham, control group, licofelone at doses of 2.5, 5, and 10 mg/kg, L-NG-nitro arginine methyl ester (L-NAME) (10 mg/kg, i.p.), aminoguanidine (AG) (100 mg/kg, i.p.), 30 min before using licofelone (10 mg/kg). Also, three groups received L-NAME, aminoguanidine, or dexamethasone. Macroscopic, microscopic, and biochemical analysis of myeloperoxidase (MPO), and nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), superoxide dismutase (SOD), reactive oxygen species (ROS), and Toll-like receptor 4 (TLR-4) were assessed in colon tissue. Licofelone at a dose of 10 mg/kg attenuated colitis, increased SOD activity, and significantly reduced colonic levels of the abovementioned inflammatory factors. In addition, licofelone improved macroscopic and microscopic symptoms in the acetic acid-induced colitis model. Moreover, the concurrent use of nitric oxide synthase (NOS) inhibitors with 10 mg/kg of licofelone reversed the observed positive effects, demonstrating the function of nitric oxide in IBD pathogenesis and the probable mechanism for licofelone in the healing process of induced colitis. A reduced level of inflammatory factors confirmed the anti-inflammatory activity of licofelone as a dual COX1,2/5-LOX inhibitor. Furthermore, outcomes revealed the protective role of licofelone in treating experimental colitis. The findings are suggestive of the potential use of licofelone in IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Ratos , Masculino , Animais , Ácido Acético , Ratos Wistar , NG-Nitroarginina Metil Éster , Mediadores da Inflamação , Colite/induzido quimicamente , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Superóxido Dismutase , Colite Ulcerativa/induzido quimicamente
15.
Curr Med Chem ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817661

RESUMO

The natural polyphenol, calebin-A, was recently discovered and identified as a novel phytopharmaceutical with anti-inflammatory, anti-tumor, and antiproliferative properties. Calebin-A occurs naturally in trace quantities in Curcuma longa/C cassia, commonly known as turmeric, from the Zingiberaceae family. Calebin-A is a curcumin analog or 'chemical cousin' of curcumin with a similar chemical structure. Although few research studies have been conducted on the pharmacological and therapeutic properties of calebin-A, it is a very promising molecule with a variety of pharmacological properties. Some studies have suggested that calebin-A is helpful in treating various cancers due to its inhibitory effect on cell growth and anti-inflammatory properties. Other studies have suggested that calebin-A may improve neurocognitive status associated with neurodegeneration caused by Alzheimer's disease (AD) by inhibiting the aggregation of ß-amyloid. Finally, several studies have proposed that calebin-A may potentially be therapeutically beneficial in treating patients with obesity. This novel compound downregulates nuclear factor (NF)-κB-mediated processes involved with cancer, such as tumor cell invasion, proliferation, metastasis, and, most profoundly, inflammation. Moreover, calebin-A influences the activities of mitogen-activated protein kinases (MAPKs) in cancer cells. The present review identifies and discusses the pharmacological and phytochemical properties of calebin-A, as well as its therapeutic benefits and limitations, for future scientists and clinicians interested in exploring calebin-A's medicinal qualities.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37936449

RESUMO

BACKGROUND: Juglone is a phenolic bioactive compound with antimicrobial, antitumour, antioxidant, and anti-inflammatory characteristics. Given its anti-inflammatory and antioxidant effects, it was selected for evaluation in the inflammatory bowel diseases (IBD) model. OBJECTIVE: The current study was performed to evaluate the therapeutic impacts of the juglone in acetic acid-induced colitis in male Wistar rats. METHODS: Juglone was extracted from Pterocarya fraxinifolia via maceration method. Colitis was induced in 36 male Wistar rats (n = 6), except in the sham group, 1 ml of acetic acid 4% was administered intrarectally. Twenty-four hours after induction of colitis, in 3 groups, juglone was administered orally (gavage) at 3 doses of 50, 100, and 150 mg/kg for 2 successive days (once a day). Other groups included the control group (only treated with acetic acid), sham group (normal saline), and standard group (Dexamethasone). To evaluate the inflammation sites, macroscopic and microscopic markers were assessed. The mRNA expression of interleukin (IL)-1ß, and tumor necrosis factor-alpha (TNF)-α were assessed by real-time PCR, while myeloperoxidase (MPO) was measured spectrophotometrically. ELISA assay kits were used to determine the colonic levels of SOD, ROS, NF-κB, and TLR-4. RESULTS: Macroscopic and microscopic assessments revealed that juglone significantly decreased colonic tissue damage and inflammation at 150 mg/kg. Juglone at 100, 150 mg/kg significantly decreased the TNF-α, MPO, and TLR-4 levels, as well as the SOD activity. All juglone-treated groups reduced the NF-κB levels compared to the control group (p < 0.001). The compound decreased the IL-1ß, and ROS levels at the concentration of 150 mg/kg. Juglone attenuated colitis symptoms, reduced inflammation cytokines, declined neutrophil infiltration, and suppressed IL- 1ß and TNF-α expressions in acetic acid-induced colitis rats. It may be proposed that juglone improved colitis in animal model through suppression of inflammatory parameters and downregulation of the NF-κB-TLR-4 pathway. CONCLUSION: Juglone exhibited anti-inflammatory and antioxidant effects in the experimental colitis model and could be a therapeutic candidate for IBD. Juglone should be a subject for further animal and clinical trials in IBD models and for safety concerns.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Ratos Wistar , Ácido Acético/efeitos adversos , Ácido Acético/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Colo/patologia , Inflamação/tratamento farmacológico , Superóxido Dismutase
17.
Stem Cells Int ; 2022: 5304860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721599

RESUMO

Postnatal teeth, wisdom teeth, and exfoliated deciduous teeth can be harvested for dental stem cell (DSC) researches. These mesenchymal stem cells (MSCs) can differentiate and also consider as promising candidates for dental and oral regeneration. Thus, the development of DSC therapies can be considered a suitable but challenging target for tissue regeneration. Epigenetics describes changes in gene expression rather than changes in DNA and broadly happens in bone homeostasis, embryogenesis, stem cell fate, and disease development. The epigenetic regulation of gene expression and the regulation of cell fate is mainly governed by deoxyribonucleic acid (DNA) methylation, histone modification, and noncoding RNAs (ncRNAs). Tissue engineering utilizes DSCs as a target. Tissue engineering therapies are based on the multipotent regenerative potential of DSCs. It is believed that epigenetic factors are essential for maintaining the multipotency of DSCs. A wide range of host and environmental factors influence stem cell differentiation and differentiation commitment, of which epigenetic regulation is critical. Several lines of evidence have shown that epigenetic modification of DNA and DNA-correlated histones are necessary for determining cells' phenotypes and regulating stem cells' pluripotency and renewal capacity. It is increasingly recognized that nuclear enzyme activities, such as histone deacetylases, can be used pharmacologically to induce stem cell differentiation and dedifferentiation. In this review, the role of epigenetic in dental and oral regenerative medicine by different types of dental stem cells is discussed in two new and promising areas of medical and biological researches in recent studies (2010-2022).

18.
Biofactors ; 48(1): 7-21, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34882874

RESUMO

Inflammatory bowel diseases (IBD), with obscure etiology, are rising and are of worldwide concern. Of the various components of IBD pathogenesis and progression, irritation appears to play a major part. Investigations on the molecular and cellular pathways that activate the IBD provide the focus for the development of useful therapies. Ginger (the rhizome of Zingiber officinale) has a broad spectrum of clinical applications due to its anti-inflammatory and anti-oxidative functions. Inflammation and oxidative stress are the key pathogenic factors in many diseases, including IBD. The most established components of ginger are phenolic compounds called gingerols. A wide range of pharmacological activities of the potential therapeutic benefit of Z. officinale have been detailed. In this regard, the anti-inflammatory activity of ginger has been documented by many researchers. It was shown that ginger is a potent inhibitor of the nuclear factor kappa B (NF-κB), signal transducer of activators of transcription (STATs), Nod-like receptor family proteins (NLRPs), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPKs), and mTOR (mTOR) pathways, as well as inhibiting various pro-inflammatory cytokines. In the present report, the potential application of ginger in the management of IBD is reviewed in detail, with an emphasis on the relevant properties of ginger and its bioactive components. The significance of the functions, side effects, and delivery of ginger to the digestive system for particular application in IBD are also considered.


Assuntos
Doenças Inflamatórias Intestinais , Zingiber officinale , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Rizoma
19.
Life (Basel) ; 12(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629426

RESUMO

Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and other plaque-stabilization effects via different signaling pathways. Different statins, including atorvastatin, rosuvastatin, pravastatin, pitavastatin, and simvastatin, are administered to manage circulatory lipid levels. In addition, statins are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase via modulating sirtuins (SIRTs). During the last two decades, SIRTs have been investigated in mammals and categorized as a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs) with significant oxidative stress regulatory function in cells-a key factor in extending cell lifespan. Recent work has demonstrated that statins upregulate SIRT1 and SIRT2 and downregulate SIRT6 in both in vitro and in vivo experiments and clinical trials. As statins show modulatory properties, especially in CVDs, future investigations are needed to delineate the role of SIRT family members in disease and to expand knowledge about the effects of statins on SIRTs. Here, we review what is currently known about the impact of statins on SIRTs and how these changes correlate with disease, particularly CVDs.

20.
Biomed Pharmacother ; 154: 113621, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055110

RESUMO

Neuroinflammation is a key pathophysiological mechanism implicated in the neurodegenerative condition. One such condition implicating neuroinflammation is traumatic brain injury (TBI). Over the past decades, various alternative natural compounds, such as curcumin, have been investigated as novel therapeutic options to mitigate the pathophysiological pathways and clinical sequelae involved in TBI. As the main component of turmeric (Curcuma longa), curcumin has a broad range of clinical properties due to its considerable antioxidative and anti-inflammatory actions. This review discusses the pleiotropic mechanisms, the side effects, curcumin's delivery to the central nervous system (CNS), and its immunomodulatory and protective effects on TBI. Clinical trials, in vivo, and in vitro studies were extracted from different scientific databases, including PubMed, Scopus, and Google Scholar, to assess the effects of curcumin or its derivatives in TBI. Findings reveal that curcumin exhibited some protective effects on TBI via modulation of cell signaling pathways including toll-like receptor-4 (TLR-4), nuclear factor kappa B (NF-κB), and Nod-like receptor family proteins (NLRPs). Moreover, curcumin upregulates the brain-derived Neurotrophic Factor/Tropomyosin receptor kinase B (BDNF/TrkB) signaling pathway, phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), nuclear factor erythroid 2-related factor 2 (Nrf2), which have crucial functions in modulation of TBI pathophysiological-mediated pathways. Curcumin displays beneficial immunomodulatory functions and protective capacities in different TBI models, although more clinical experiments are required to clarify curcumin's precise mechanisms and function in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Curcumina , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA