Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 41(4): 1637-1646, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28780675

RESUMO

Peat moss-derived biochars were produced at the pyrolytic temperatures of 300, 500, and 700 °C and were tested for evaluating the removal efficiency of volatile organic compounds (VOCs) from waters. As the pyrolytic temperature increases, the carbon contents were increased from 66 to 84%, and the contents of hydrogen and oxygen were decreased from 4 to 1% and from 19 to 4%, respectively. The surface areas of the biochars were 2 m2 g-1 at the pyrolysis temperature of 300 °C and were increased to 200 and 300 m2 g-1 at 500 and 700 °C, respectively. Results of FTIR analysis showed that functional groups such as hydroxyl, nitro, and carboxyl groups were observed in the biochar produced at 300 °C; however, the functional groups were removed in the biochars produced at higher temperatures. Sorption kinetics and equilibrium experiments were conducted with selected six VOCs of benzene (BZN), toluene (TOL), ethylbenzene (EBZ), p-xylene (pXYL), trichloroethylene (TCE), and tetrachloroethylene (PCE), which are the most common VOCs found in contaminated groundwater of South Korea. Sorption equilibrium was attained in 6 h with the constants of first order kinetic rate of 0.5 h-1 for the VOCs tested. Freundlich isotherm well described the adsorption of VOCs to the biochars. Biochar produced at 500 °C showed the highest sorption capacity for all VOCs with an average Kf of 7692 (±2265), although biochars produced at 300 °C (Kf = 3146 ± 629) and 700 °C (Kf = 2776 ± 2693) showed the similar sorption capacity. The biochars produced at 500 °C can be an excellent remover of VOCs in contaminated groundwater.


Assuntos
Carvão Vegetal/química , Sphagnopsida/química , Compostos Orgânicos Voláteis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Carbono/análise , Água Subterrânea/química , Hidrogênio/análise , Cinética , Oxigênio/análise , Pirólise , República da Coreia , Temperatura , Tricloroetileno/química , Tricloroetileno/isolamento & purificação , Compostos Orgânicos Voláteis/química , Poluentes Químicos da Água/química , Purificação da Água
2.
J Hazard Mater ; 469: 133825, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430587

RESUMO

Permeable reactive barrier (PRB) is an effective in-situ technology for groundwater remediation. The important factors in PRB design are the width and reactive material. In this study, the beaded coal mine drainage sludge (BCMDS) was employed as the filling material to adsorb arsenic pollutants in groundwater, aiming to design the width of PRB. The design methods involving traditional continue column experiments and empirical formulas, as well as machine learning (ML) predictions and statistical methods, which are compared with each other. Traditional methods are determined based on breakthrough curves under several conditions. ML method has advantages in predicting the width of mass transfer zone (WMTZ), which simultaneously consider the characteristics of material, pollutant, and environmental conditions, with data collected from articles. After data preprocessing and model optimizing, selected the XGBoost algorithm based on the high accuracy, which shows good prediction for WMTZ (R2 = 0.97, RMSE = 0.15). The experimentally derived WMTZ values were also used to validate the predictions, demonstrating the ML low error rate of 7.04 % and the feasibility. Subsequent statistical analysis of multiple linear regression (MLR) showed the error rate of 39.43 %, interpret superiority of ML due to the complexity of influencing factors and the insufficient precision of math regression. Compared to traditional width design methods, ML can improve design efficiency and save experimental time and manpower. Further expansion of the dataset and optimization of algorithms could enhance the accuracy of ML, overcoming existing limitations and gaining broader applications.

3.
Chemosphere ; 363: 142701, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925516

RESUMO

A prediction model based on XGBoost is proposed for ultrasonic degradation of micropollutants' kinetic constants. After parameter optimization through iteration, the model achieves Evaluation metrics with R2 and SMAPE reaching 0.99 and 2.06%, respectively. The impact of design parameters on predicting kinetic constants for ultrasound degradation of trace pollutants was assessed using Shapley additive explanations (SHAP). Results indicate that power density and frequency significantly impact the predictive performance. The database was sorted based on power density and frequency values. Subsequently, 800 raw data were split into small databases of 200 each. After confirming that reducing the database size doesn't affect prediction accuracy, ultrasound degradation experiments were conducted for five pollutants, yielding experimental data. A small database with experimental conditions within the numerical range was selected. Data meeting both feature conditions were filtered, resulting in an optimized 60-data group. After incorporating experimental data, a model was trained for prediction. Degradation kinetic constants for experiments (kE) were compared with predicted constants (for 800 data-based model: kP-800 and for 60 data-based model: kP-60). Results showed ibuprofen, bisphenol A, carbamazepine, and 17ß-Estradiol performed better on the 60-data group (kP-60/kE: 1.00, 0.99, 1.00, 1.00), while caffeine suited the model trained on the 800-data group (kP-800/kE: 1.02).


Assuntos
Compostos Benzidrílicos , Aprendizado de Máquina , Poluentes Químicos da Água , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Compostos Benzidrílicos/química , Fenóis/química , Ultrassom , Ibuprofeno/química , Carbamazepina/química
4.
Water Res ; 251: 121097, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218071

RESUMO

Permeable reactive barrier (PRB) is an important groundwater treatment technology. However, selecting the optimal reactive material and estimating the width remain critical and challenging problems in PRB design. Machine learning (ML) has advantages in predicting evolution and tracing contaminants in temporal and spatial distribution. In this study, ML was developed to design PRB, and its feasibility was validated through experiments and a case study. ML algorithm showed a good prediction about the Freundlich equilibrium parameter (R2 0.94 for KF, R2 0.96 for n). After SHapley Additive exPlanation (SHAP) analysis, redefining the range of the significant impact factors (initial concentration and pH) can further improve the prediction accuracy (R2 0.99 for KF, R2 0.99 for n). To mitigate model bias and ensure comprehensiveness, evaluation index with expert opinions was used to determine the optimal material from candidate materials. Meanwhile, the ML algorithm was also applied to predict the width of the mass transport zone in the adsorption column. This procedure showed excellent accuracy with R2 and root-mean-square-error (RMSE) of 0.98 and 1.2, respectively. Compared with the traditional width design methodology, ML can enhance design efficiency and save experiment time. The novel approach is based on traditional design principles, and the limitations and challenges are highlighted. After further expanding the data set and optimizing the algorithm, the accuracy of ML can make up for the existing limitations and obtain wider applications.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Adsorção
5.
J Environ Manage ; 115: 235-40, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23266479

RESUMO

The catalytic assistance of ultrasound (designated as US) for the removal of Mn(II) by oyster shells (designated as OS) was investigated with respect to major parameters such as pH, initial Mn(II) concentration, and US power density. The kinetic data of Mn(II) removal by the combination of oyster shells and ultrasound (OS/US) was fitted by the first-order kinetic model. Results show that the rate constant of the OS/US system was in the range 3.1-54.5 × 10(-2) min(-1), which is about 130 times higher than that of the homogeneous oxidation of Mn(II) by O(2), and was about two times higher than that of commercial surrogate materials (CaO and CaCO(3)) associated with US under the same operational condition. The US power densities for the OS/US system and the log-scale of the first-order rate constants showed a linear positive correlation with a slope of 0.042. X-ray diffraction, and Fourier transform infrared analyses revealed that the dissolved Mn(II) was oxidized into Mn(2)O(3) or MnO(2), as well as precipitated in the form of MnCO(3) by OS/US.


Assuntos
Exoesqueleto/química , Manganês/química , Ostreidae , Animais , Catálise , Cinética
6.
J Environ Manage ; 116: 107-12, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23295677

RESUMO

The mechanism for the removal of Zn(II) by using coal mine drainage sludge (CMDS) was investigated by spectroscopic analysis and observations of batch tests using model materials. Zeta potential analysis showed that CMDS(25) (dried at 25 °C) and CMDS(550) (dried at 550 °C) had a much lower isoelectric point of pH (pH(IEP)) than either goethite or calcite, which are the main constituents of CMDS. This indicates that the negatively charged anion (sulfate) was incorporated into the structural networks and adsorbed on the surface of CMDS via outer-sphere complexation. The removal of Zn(II) by CMDS was thought to be primarily caused by sulfate-complexed iron (oxy)hydroxide and calcite. In particular, the electrostatic attraction of the negatively charged functional group, FeOH-SO(4)(2-), to the dissolved Zn(II) could provide high removal efficiencies over a wide pH range. Thermodynamic modeling and Fourier transform infrared spectroscopy (FT-IR) demonstrated that ZnSO(4) is the dominant species in the pH range 3-7 as the sulfate complexes with the hydroxyl groups, whereas the precipitation of Zn(II) as ZnCO(3) or Zn(5)(CO(3))(2) (OH)(6) through the dissolution of calcite is the dominant mechanism in the pH range 7-9.6.


Assuntos
Minas de Carvão , Poluentes Químicos da Água/metabolismo , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Minerais/química , Esgotos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química , Zinco/química , Zinco/metabolismo
7.
Environ Monit Assess ; 185(8): 6855-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23307052

RESUMO

The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Poluentes do Solo/análise , Solo/química , Cidades , Poluição por Petróleo/análise , Ferrovias , Microbiologia do Solo , Reforma Urbana
8.
Chemosphere ; 329: 138526, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019404

RESUMO

Bisphenol A (BPA) as a trace contaminant has been reported, due to widespread use in the plastics industry. This study applied the 35 kHz ultrasound (US) to activate four different common oxidants (H2O2, HSO5-, S2O82-, and IO4-) for BPA degradation. With increasing initial concentration of oxidants, the degradation rate of BPA increased. The synergy index confirmed that a synergistic relationship between US and oxidants. This study also examined the impact of pH and temperature. The results showed that the kinetic constants of US, US-H2O2, US-HSO5- and US-IO4-decreased when the pH increased from 6 to 11. The optimal pH for US-S2O82- was 8. Notably, increasing temperature decreased the performance of US, US-H2O2, and US-IO4- systems, while it could increase the degradation of BPA in US-S2O82- and US-HSO5-. The activation energy for BPA decomposition using the US-IO4- system was the lowest, at 0.453nullkJnullmol-1, and the synergy index was the highest at 2.22. Additionally, the ΔG# value was found to be 2.11 + 0.29T when the temperature ranged from 25 °C to 45 °C. The main oxidation contribution is achieved by hydroxyl radicals in scavenger test. The mechanism of activation of US-oxidant is heat and electron transfer. In the case of the US-IO4- system, the economic analysis yielded 271 kwh m-3, which was approximately 2.4 times lower than that of the US process.


Assuntos
Oxidantes , Poluentes Químicos da Água , Oxidantes/química , Peróxido de Hidrogênio/química , Ultrassom , Fenóis/química , Compostos Benzidrílicos/química , Oxirredução , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 453: 131349, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084511

RESUMO

The zero-valent iron (ZVI) based reactive materials are potential remediation reagents in permeable reactive barriers (PRB). Considering that reactive materials is the essential to determining the long-term stability of PRB and the emergence of a large number of new iron-based materials. Here, we present a new approach using machine learning to screen PRB reactive materials, which proposes to improve the efficiency and practicality of selection of ZVI-based materials. To compensate for the insufficient amount of existing machine learning source data and the real-world implementation, machine learning combines evaluation index (EI) and reactive material experimental evaluations. XGboost model is applied to estimate the kinetic data and SHAP is used to improve the accuracy of model. Batch and column tests were conducted to investigate the geochemical characteristics of groundwater. The study find that specific surface area is a fundamental factor correlated with the kinetic constants of ZVI-based materials, according to SHAP analysis. Reclassifying the data with specific surface area significantly improved prediction accuracy (reducing RMSE from 1.84 to 0.6). Experimental evaluation results showed that ZVI had 3.2 times higher anaerobic corrosion reaction kinetic constants and 3.8 times lower selectivity than AC-ZVI. Mechanistic studies revealed the transformation pathways and endpoint products of iron compounds. Overall, this study is a successful initial attempt to use machine learning for selecting reactive materials.

10.
J Nanosci Nanotechnol ; 12(11): 8396-400, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23421221

RESUMO

We have demonstrated a facile protocol for synthesizing CuO and Cu2O mixed-phase nanostructures by anodization of copper hydroxide (Cu(OH)2) nanoneedles and their heat treatment in different atmospheres, which affect photocatalytic degradation efficiency. The oxygen annealed sample had relatively small (100 nm) lamellar, spherical nanoparticulate structures on the substrate surface, which showed better photocatalytic degradation of reactive black 5 dye resulting from the appropriate morphology and phase formation, compared to the samples annealed in different atmospheres and vacuum. The pseudo first-order rate constant (k) of the oxygen annealed sample was 0.0054/min, which was relatively high due to the formation of a CuO-Cu2O heterojunction with matching band potentials. Air, nitrogen, argon and vacuum annealing resulted in bigger particles and different morphologies, which led to pseudo first-order rate constants (k) of 0.0032/min (air-annealed); 0.0021/min (N2-annealed); 0.0033/min (Ar-annealed); and 0.0027/min (vacuum-annealed), which resulted in poor photocatalytic degradation of the reactive black 5 dye.


Assuntos
Cristalização/métodos , Eletrodos , Hidróxidos/síntese química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxidos/síntese química , Cobre , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Fotoquímica/métodos , Propriedades de Superfície/efeitos da radiação
11.
J Nanosci Nanotechnol ; 12(12): 8908-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23447937

RESUMO

In the present study, amorphous titanium dioxide (TiO2) nanotubes were synthesized by one-step anodization technique and subsequently annealed in different environments to investigate the effect of annealing atmospheres on the formation of different crystalline phases. X-ray Diffraction (XRD) patterns clearly showed the presence of anatase TiO2 phase with various crystallite sizes. The samples annealed in oxygen and air atmospheres at 500 degrees C showed a dominant anatase phase and a small amount of rutile phase, on the other hand, the samples annealed in nitrogen and argon atmospheres and in a vacuum at 500 degrees C contained the anatase phase only. XPS analysis of the samples showed a broadening in the binding energy curves with respect to variation in annealing atmosphere, confirming the variation in surface defects, which in turn affect photocatalytic degradation. The vacuum-annealed sample showed superior photocatalytic degradation efficiency as it had relatively higher pseudo-first order rate constants (k) of 0.009/min.

12.
J Environ Manage ; 101: 104-10, 2012 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-22406850

RESUMO

Ultrasound (US) combined with ultraviolet (UV) irradiation and a titanium dioxide (TiO(2)) catalyst was used to effectively remove diethyl phthalate (DEP) from aqueous solutions. Single (sonolysis, photolysis, photocatalysis) and combined (sonophotolysis, sonophotocatalysis) processes were performed to confirm the synergistic effects and DEP degradation mechanism. Using only US, the optimum frequency for DEP degradation was 283 kHz. At this frequency a high rate of hydrogen peroxide (H(2)O(2)) formation was observed of approximately 0.32 mM min(-1). The pseudo-first order degradation rate constants were 10(-2)-10(-4) min(-1) depending on the process. Significant degradation and mineralization (TOC) of DEP were observed with the sonophotolytic and sonophotocatalytic processes. Moreover, synergistic effects of 1.29 and 1.95 were exhibited at the sonophotocatalytic and sonophotolytic DEP degradation, respectively. Furthermore, additional advantageous reactions may occur in the heterogeneous sonophotocatalytic process due to interactions between US, UV, and the photocatalyst.


Assuntos
Ácidos Ftálicos/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Catálise , Peróxido de Hidrogênio/química , Oxirredução , Fotólise , Soluções , Titânio , Ultrassom/métodos , Raios Ultravioleta , Poluentes Químicos da Água/isolamento & purificação
13.
J Hazard Mater ; 424(Pt A): 127322, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34601407

RESUMO

Soil contamination due to chlorinated organics prompts an important environmental problem; however, the iron-based reduction materials and complicated ground environment are the main barriers to implementation and promotion of in situ soil remediation. Therefore, this study aims to evaluate the reductants zero-valent iron (ZVI) and its activated carbon composite (AC-ZVI) in terms of their self-oxidation and selectivity in soil experiments. The results indicated that saturated moisture conditions were beneficial for degradation due to the dispersal of the pollutants from soil particles. Particularly, increasing the water/soil ratio to the over-saturated state would decrease the selectivity of ZVI and AC-ZVI. Meanwhile, increasing the reductant loading decreased the selectivity of ZVI and AC-ZVI, whereas the high initial concentration increased the selectivity of AC-ZVI. In addition, the self-oxidation of ZVI (3.0 ×10-3 h-1) is 4.2 times higher than that of AC-ZVI (0.7 ×10-3 h-1), and the selectivity of AC-ZVI (48%) is 6.9 times higher than that of ZVI (7%), which confirmed that AC-ZVI is a superior iron-based amendment in saturated moisture conditions. Therefore, this study provides a reliable and feasible evaluation method for in situ remediation process, and deepens the understanding of the effects of moisture contents.


Assuntos
Pentaclorofenol , Poluentes do Solo , Anaerobiose , Ferro/análise , Substâncias Redutoras , Solo , Poluentes do Solo/análise
14.
Chemosphere ; 291(Pt 3): 132894, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822862

RESUMO

The downflow fixed-bed column adsorption-desorption of arsenic by the beaded coal mine drainage sludge-Youngdong (BCMDS-YD) adsorbent was experimentally studied. The specific surface area of BCMDS-YD synthesized using inorganic binding was 178 m2 g-1, and the pHIEP was 5.32. The XRD analysis revealed that it was composed of calcite and schwertmannite. As a result, an increase in the inflow rate resulted in an earlier column exhaustion. The breakthrough curve indicated that a smaller adsorbent particle size and lower influent pH prolonged the column life span. Thomas logistic model was applied to fit the breakthrough curve by linear and nonlinear regression. Under the condition of an influent flow rate of 2.65 mL min-1 (EBCT 40 min), an influent arsenic average concentration of 0.5-1 mg L-1, an influent pH of 7.6, an adsorbent mass of 100 g, an adsorbent grain size of 1.40-1.70 mm, and an operating temperature of 25 °C, the equilibrium adsorption capacity reached 4.56 mg g-1. The mechanism of arsenic adsorption is adsorption and precipitation. As a result of the adsorbent reuse experiment, it was judged that it could be reused with good results in all three cycle experiments. The cost of treating arsenic with the BCMDS-YD adsorbent was 0.145 $ per m-3. The results of this study show examples of sustainable development concepts in mining drainage, and BCMDS-YD can effectively remove arsenic and other heavy metals from acid mine drainage.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Mineração , Poluentes Químicos da Água/análise
15.
Chemosphere ; 306: 135547, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35787881

RESUMO

Eco-friendly pollutant treatment technology has a developing tendency in future. The combination of ultrasound (US) and electrochemical (EC) is a promising technology, because they are efficient, clean and environmentally friendly. In this study, the impacts of anode material have been investigated in US (300 kHz) and EC (10V) system. The results of all systems revealed that the kinetic constant decreased with increasing pH. The results are also shown that ΔG# > 0 and ΔH# > 0 during PCP degradation in EC or US-EC systems are non-spontaneous and endothermic reactions. Meanwhile, in the US-EC system, TiO2, Ti4O7, PbO2, SnSb, RuIr, and BDD, except for TiO2, all the anode materials showed a synergistic index (SI) of 106-197%, and the activation energies were 19.32, 33.4, 33.74, 32.84, 10.41, 36.44 kJ mol-1, respectively. In EC and US-EC systems, PCP can be completely mineralized by BDD anode within 30 min. TBA scavenger experiments verified that hydroxyl radicals were the main oxidant in each system using BDD and PbO2 anode. As a result of estimating the cost according to the anode material when removing PCP using the EC or US-EC system, BDD was the smallest in the two systems, 1.58 and 1.12 $ m-3, respectively. Finally, this study may serve as a reference for implementation of US-EC system in wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrodos , Radical Hidroxila , Cinética , Oxirredução , Poluentes Químicos da Água/análise , Purificação da Água/métodos
16.
Environ Geochem Health ; 33 Suppl 1: 103-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21063752

RESUMO

Various analyses of physico-chemical characteristics and batch tests were conducted with the sludge obtained from a full-scale electrolysis facility for treating coal mine drainage in order to find the applicability of sludge as a material for removing Zn(II) in an aqueous phase. The physico-chemical analysis results indicated that coal mine drainage sludge (CMDS) had a high specific surface area and also satisfied the standard of toxicity characteristic leaching procedure (TCLP) because the extracted concentrations of certain toxic elements such as Pb, Cu, As, Hg, Zn, and Ni were much less than their regulatory limits. The results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the CMDS mainly consists of goethite (70%) and calcite (30%) as a weight basis. However, the zeta potential analysis represented that the CMDS had a lower isoelectric point of pH (pH(IEP)) than that of goethite or calcite. This might have been caused by the complexation of negatively charged anions, especially sulfate, which usually exists with a high concentration in coal mine drainage. The results of Fourier transform infrared (FT-IR) spectrometry analysis revealed that Zn(II) was dominantly removed as a form of precipitation by calcite, such as smithsonite [ZnCO3] or hydrozincite [Zn5(CO3)2(OH)6]. Recycling sludge, originally a waste material, for the removal process of Zn(II), as well as other heavy metals, could be beneficial due to its high and speedy removal capability and low economic costs.


Assuntos
Minas de Carvão , Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Esgotos/química , Zinco/química , Adsorção , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Ponto Isoelétrico , Cinética , Minerais/química , Tamanho da Partícula , Reciclagem , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
17.
Environ Geochem Health ; 33 Suppl 1: 159-66, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21061045

RESUMO

stabilization/solidification (S/S) process was used to immobilize Cu in contaminated soils obtained from two army firing ranges sites (A and B) with total Cu concentrations of 520 and 380 mg/kg, respectively. Both waste oyster shells (WOS) and pretreated oyster shells (POS) were used to immobilize Cu in the contaminated soils. Waste oyster shells passing the #10 mesh and #20 mesh were used for the Sites A and B, respectively. WOS- and POS-treated soil samples cured for 28 days were evaluated for Cu leaching by the Korean Standard Leaching Test (KSLT) method. Slurry suspensions were prepared to investigate the Cu immobilization mechanism using X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) energy dispersive X-ray spectroscopy (EDX) analyses. The treatment results showed that the POS treatment was more effective than the WOS treatment of 28 days. For Site A, 10 wt% WOS and 3 wt% POS dosages were required to pass the Korean warning standard of 50 mg/kg, while 10 wt% WOS and 5 wt% POS dosages were required for the Site B treatment. The XRPD and SEM-EDX results showed that Cu immobilization was strongly linked to both CSH/CAH and ettringite. Overall, the POS treatment was effective at immobilizing the Cu in the contaminated soils, very likely due to its CaO content.


Assuntos
Exoesqueleto/química , Cobre/química , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Ostreidae/química , Poluentes do Solo/química , Adsorção , Animais , Carbonato de Cálcio/química , Compostos de Cálcio/química , Minerais/química , Óxidos/química , República da Coreia
18.
Environ Geochem Health ; 33 Suppl 1: 81-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21046431

RESUMO

This study examines the adsorption isotherms, kinetics and mechanisms of Pb²(+) sorption onto waste cow bone powder (WCBP) surfaces. The concentrations of Pb²(+) in the study range from 10 to 90 mg/L. Although the sorption data follow the Langmuir and Freundlich isotherm, a detailed examination reveals that surface sorption or complexation and co-precipitation are the most important mechanisms, along with possibly ion exchange and solid diffusion also contributing to the overall sorption process. The co-precipitation of Pb²(+) with the calcium hydroxyapatite (Ca-HAP) is implied by significant changes in Ca²(+) and PO4³â» concentrations during the metal sorption processes. The Pb²(+) sorption onto the WCBP surface by metal complexation with surface functional groups such as ≡ POH. The major metal surface species are likely to be ≡ POPb(+). The sorption isotherm results indicated that Pb²(+) sorption onto the Langmuir and Freundlich constant q(max) and K( F ) is 9.52 and 8.18 mg g⁻¹, respectively. Sorption kinetics results indicated that Pb²(+) sorption onto WCBP was pseudo-second-order rate constants K2 was 1.12 g mg⁻¹ h⁻¹. The main mechanism is adsorption or surface complexation (≡POPb(+): 61.6%), co-precipitation or ion exchange [Ca3(.)93 Pb1(.)07 (PO4)3 (OH): 21.4%] and other precipitation [Pb 50 mg L⁻¹ and natural pH: 17%). Sorption isotherms showed that WCBP has a much higher Pb²(+) removal rate in an aqueous solution; the greater capability of WCBP to remove aqueous Pb²(+) indicates its potential as another promising way to remediate Pb²(+)-contaminated media.


Assuntos
Apatitas/química , Osso e Ossos/química , Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Adsorção , Animais , Cálcio/química , Bovinos , Cinética , Fosfatos/química , Propriedades de Superfície
19.
Chemosphere ; 284: 131311, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34182283

RESUMO

Perfluorooctanoic acid (PFOA) is a carcinogen with a high binding energy between fluorine and carbon and is symmetrically linked, making it difficult to treat. In this study, a self-doped TiO2 nanotube array (TNTA) was used as the anode and platinum as the cathode to quantify the PFOA removal mechanism using a photoelectrochemical (PEC) system. The external voltage was negative compared to that of the anode. In addition, NO3- and t-BuOH were used as scavengers to quantify the PFOA oxidation/reduction mechanism in the PEC system. As a result of the study, TNTA crystals are TiO2 anatase, and the band gap energy was 3.42. The synergy index of PEC was 1.25, and the best electrolyte was SO42-. The PFOA decomposition activation energy corresponds to 70.84 kJ mol-1. Moreover, ΔH# and ΔS# correspond to 68.34 kJ mol-1 and 0.190 kJ mol-1 K-1, respectively. When the external negative voltage was 1 V, the contributions of the oxidation/reduction reaction during PFOA decomposition were 60% and 40%, and when the external negative voltage was 5 V, the contributions of the redox reaction were 45% and 55%. As the external negative voltage increased, the contribution of the reduction reaction increased as the number of electrons applied to the anode increased. When PFOA was decomposed, the by-products were C7F13O2H, C6F11O2H, C5F9O2H, and C4F7O2H, respectively. This study is expected to be used as basic data for research on the effects of other factors on the oxidation/reduction as well as the selection of anode and cathode materials on the decomposition of pollutants other than PFOA when using a PEC system.


Assuntos
Caprilatos , Fluorocarbonos , Eletrodos , Oxirredução
20.
Environ Pollut ; 275: 116617, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33556734

RESUMO

Soil contaminated with toxic heavy metals (THMs) was stabilized by adding a combination of waste resources in 7.0 wt%, including coal-mine drainage sludge, waste cow bone, and steelmaking slag, in the ratio of 5:35:60. Subsequently, corn and peanut were cultivated in treated soil to investigate the effects of the waste resources on THM mobility in soil and translocation to plants. Sequential extraction procedures (SEP) was used to analyze mobile phase THMs which could be accumulated in the plants. SEP shows that mobile Pb, Cd, Cu, Zn, Ni, Cr, and As were reduced by 8.48%, 29.22%, 18.85%, 21.66%, 4.58%, 62.78%, and 20.01%, respectively. The bioaccumulation of THMs was clearly hindered by stabilization; however, the increment in the amount of immobile-phase THMs and change in the amount of translocated THMs was not proportional. The corn grains grown above the soil surface were compared with the peanut grains grown beneath the soil surface, and the results indicating that the efficiency of stabilization on THM translocation may not depend on the contact of grain to soil but the nature of plant. Interestingly, the results of bioaccumulation with and without stabilization showed that the movement of some THMs inside the plants was affected by stabilization.


Assuntos
Metais Pesados , Poluentes do Solo , Arachis , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA