Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031746

RESUMO

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Assuntos
Biopolímeros/metabolismo , Mucinas/metabolismo , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Dissulfetos/metabolismo , Feminino , Glicosilação , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mucinas/química , Mucinas/ultraestrutura , Peptídeos/química , Domínios Proteicos , Multimerização Proteica , Fator de von Willebrand/química , Fator de von Willebrand/ultraestrutura
2.
Blood ; 140(26): 2835-2843, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179246

RESUMO

The von Willebrand factor (VWF) glycoprotein is stored in tubular form in Weibel-Palade bodies (WPBs) before secretion from endothelial cells into the bloodstream. The organization of VWF in the tubules promotes formation of covalently linked VWF polymers and enables orderly secretion without polymer tangling. Recent studies have described the high-resolution structure of helical tubular cores formed in vitro by the D1D2 and D'D3 amino-terminal protein segments of VWF. Here we show that formation of tubules with the helical geometry observed for VWF in intracellular WPBs requires also the VWA1 (A1) domain. We reconstituted VWF tubules from segments containing the A1 domain and discovered it to be inserted between helical turns of the tubule, altering helical parameters and explaining the increased robustness of tubule formation when A1 is present. The conclusion from this observation is that the A1 domain has a direct role in VWF assembly, along with its known activity in hemostasis after secretion.


Assuntos
Células Endoteliais , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Células Endoteliais/metabolismo , Corpos de Weibel-Palade/metabolismo , Hemostasia
4.
PLoS Comput Biol ; 15(8): e1007207, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31442220

RESUMO

Antibodies developed for research and clinical applications may exhibit suboptimal stability, expressibility, or affinity. Existing optimization strategies focus on surface mutations, whereas natural affinity maturation also introduces mutations in the antibody core, simultaneously improving stability and affinity. To systematically map the mutational tolerance of an antibody variable fragment (Fv), we performed yeast display and applied deep mutational scanning to an anti-lysozyme antibody and found that many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface, within the antibody core. Rosetta design combined enhancing mutations, yielding a variant with tenfold higher affinity and substantially improved stability. To make this approach broadly accessible, we developed AbLIFT, an automated web server that designs multipoint core mutations to improve contacts between specific Fv light and heavy chains (http://AbLIFT.weizmann.ac.il). We applied AbLIFT to two unrelated antibodies targeting the human antigens VEGF and QSOX1. Strikingly, the designs improved stability, affinity, and expression yields. The results provide proof-of-principle for bypassing laborious cycles of antibody engineering through automated computational affinity and stability design.


Assuntos
Afinidade de Anticorpos , Desenho de Fármacos , Região Variável de Imunoglobulina/genética , Engenharia de Proteínas/métodos , Animais , Afinidade de Anticorpos/genética , Biologia Computacional , Células HEK293 , Humanos , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Região Variável de Imunoglobulina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/imunologia , Biblioteca de Peptídeos , Engenharia de Proteínas/estatística & dados numéricos , Estabilidade Proteica , Software , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia
5.
Nat Biomed Eng ; 8(1): 30-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37550425

RESUMO

Conventional methods for humanizing animal-derived antibodies involve grafting their complementarity-determining regions onto homologous human framework regions. However, this process can substantially lower antibody stability and antigen-binding affinity, and requires iterative mutational fine-tuning to recover the original antibody properties. Here we report a computational method for the systematic grafting of animal complementarity-determining regions onto thousands of human frameworks. The method, which we named CUMAb (for computational human antibody design; available at http://CUMAb.weizmann.ac.il ), starts from an experimental or model antibody structure and uses Rosetta atomistic simulations to select designs by energy and structural integrity. CUMAb-designed humanized versions of five antibodies exhibited similar affinities to those of the parental animal antibodies, with some designs showing marked improvement in stability. We also show that (1) non-homologous frameworks are often preferred to highest-homology frameworks, and (2) several CUMAb designs that differ by dozens of mutations and that use different human frameworks are functionally equivalent.


Assuntos
Anticorpos , Regiões Determinantes de Complementaridade , Animais , Humanos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Anticorpos/química
6.
FEBS J ; 290(21): 5196-5203, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526947

RESUMO

CysD domains are disulfide-rich modules embedded within long O-glycosylated regions of mucin glycoproteins. CysD domains are thought to mediate intermolecular adhesion during the intracellular bioassembly of mucin polymers and perhaps also after secretion in extracellular mucus hydrogels. The human genome encodes 18 CysD domains distributed across three different mucins. To date, experimental structural information is available only for the first CysD domain (CysD1) of the intestinal mucin MUC2, which is one of the most divergent of the CysDs. To provide experimental data on a CysD that is representative of a larger branch of the fold family, we determined the crystal structure of the seventh CysD domain (CysD7) from MUC5AC, a mucin found in the respiratory tract and stomach. The MUC5AC CysD7 structure revealed a single calcium-binding site, contrasting with the two sites in MUC2 CysD1. The MUC5AC CysD7 structure also contained an additional α-helix absent from MUC2 CysD1, with potential functional implications for intermolecular interactions. Lastly, the experimental structure emphasized the flexibility of the loop analogous to the main adhesion loop of MUC2 CysD1, suggesting that both sequence divergence and physical plasticity in this region may contribute to the adaptation of mucin CysD domains.


Assuntos
Mucinas , Muco , Humanos , Mucinas/genética , Genoma Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA