Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 1): 116067, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149020

RESUMO

BACKGROUND: Phthalates, a group of pervasive endocrine-disrupting chemicals found in plastics and personal care products, have been associated with a wide range of developmental and health outcomes. However, their impact on biomarkers of aging has not been characterized. We tested associations between prenatal exposure to 11 phthalate metabolites on epigenetic aging in children at birth, 7, 9, and 14 years of age. We hypothesized that prenatal phthalate exposure will be associated with epigenetic age acceleration measures at birth and in early childhood, with patterns dependent on sex and timing of DNAm measurement. METHODS: Among 385 mother-child pairs from the CHAMACOS cohort, we measured DNAm at birth, 7, 9, and 14 years of age, and utilized adjusted linear regression to assess the association between prenatal phthalate exposure and Bohlin's Gestational Age Acceleration (GAA) at birth and Intrinsic Epigenetic Age Acceleration (IEAA) throughout childhood. Additionally, quantile g-computation was utilized to assess the effect of the phthalate mixture on GAA at birth and IEAA throughout childhood. RESULTS: We found a negative association between prenatal di (2-ethylhexyl) phthalate (DEHP) exposure and IEAA among males at age 7 (-0.62 years; 95% CI:-1.06 to -0.18), and a marginal negative association between the whole phthalate mixture and GAA among males at birth (-1.54 days, 95% CI: -2.79 to -0.28), while most other associations were nonsignificant. CONCLUSIONS: Our results suggest that prenatal exposure to certain phthalates is associated with epigenetic aging in children. Additionally, our findings suggest that the influence of prenatal exposures on epigenetic age may only manifest during specific periods of child development, and studies relying on DNAm measurements solely from cord blood or single time points may overlook potential relationships.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Masculino , Gravidez , Recém-Nascido , Feminino , Humanos , Pré-Escolar , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Ácidos Ftálicos/toxicidade , Parto , Epigênese Genética , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade
2.
Proc Biol Sci ; 288(1955): 20210721, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34284625

RESUMO

Humans have largely supplanted natural light cycles with a variety of electric light sources and schedules misaligned with day-night cycles. Circadian disruption has been linked to a number of disease processes, but the extent of circadian disruption among the population is unknown. In this study, we measured light exposure and wrist temperature among residents of an urban area during each of the four seasons, as well as light illuminance in nearby outdoor locations. Daily light exposure was significantly lower for individuals, compared to outdoor light sensors, across all four seasons. There was also little seasonal variation in the realized photoperiod experienced by individuals, with the only significant difference occurring between winter and summer. We tested the hypothesis that differential light exposure impacts circadian phase timing, detected via the wrist temperature rhythm. To determine the influence of light exposure on circadian rhythms, we modelled the impact of morning and night-time light exposure on the timing of the maximum wrist temperature. We found that morning and night-time light exposure had significant but opposing impacts on maximum wrist temperature timing. Our results demonstrate that, within the range of exposure seen in everyday life, night-time light can delay the onset of the maximum wrist temperature, while morning light can lead to earlier onset. Our results demonstrate that humans are minimizing natural seasonal differences in light exposure, and that circadian shifts and disruptions may be a more regular occurrence in the general population than is currently recognized.


Assuntos
Ritmo Circadiano , Fotoperíodo , Humanos , Estações do Ano
3.
Environ Int ; 190: 108862, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38972116

RESUMO

INTRODUCTION: Epigenetic marks are key biomarkers linking the prenatal environment to health and development. However, DNA methylation associations and persistence of marks for prenatal exposure to multiple Endocrine Disrupting Chemicals (EDCs) in human populations have not been examined in great detail. METHODS: We measured Bisphenol-A (BPA), triclosan, benzophenone-3 (BP3), methyl-paraben, propyl-paraben, and butyl-paraben, as well as 11 phthalate metabolites, in two pregnancy urine samples, at approximately 13 and 26 weeks of gestation in participants of the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study (N = 309). DNA methylation of cord blood at birth and child peripheral blood at ages 9 and 14 years was measured with 450K and EPIC arrays. Robust linear regression was used to identify differentially methylated probes (DMPs), and comb-p was used to identify differentially methylated regions (DMRs) in association with pregnancy-averaged EDC concentrations. Quantile g-computation was used to assess associations of the whole phenol/phthalate mixture with DMPs and DMRs. RESULTS: Prenatal BPA exposure was associated with 1 CpG among males and Parabens were associated with 10 CpGs among females at Bonferroni-level significance in cord blood. Other suggestive DMPs (unadjusted p-value < 1 × 10-6) and several DMRs associated with the individual phenols and whole mixture were also identified. A total of 10 CpG sites at least suggestively associated with BPA, Triclosan, BP3, Parabens, and the whole mixture in cord blood were found to persist into adolescence in peripheral blood. CONCLUSIONS: We found sex-specific associations between prenatal phenol exposure and DNA methylation, particularly with BPA in males and Parabens in females. Additionally, we found several DMPs that maintained significant associations with prenatal EDC exposures at age 9 and age 14 years.

4.
Aging Cell ; : e14194, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808605

RESUMO

Worldwide trends to delay childbearing have increased parental ages at birth. Older parental age may harm offspring health, but mechanisms remain unclear. Alterations in offspring DNA methylation (DNAm) patterns could play a role as aging has been associated with methylation changes in gametes of older individuals. We meta-analyzed epigenome-wide associations of parental age with offspring blood DNAm of over 9500 newborns and 2000 children (5-10 years old) from the Pregnancy and Childhood Epigenetics consortium. In newborns, we identified 33 CpG sites in 13 loci with DNAm associated with maternal age (PFDR < 0.05). Eight of these CpGs were located near/in the MTNR1B gene, coding for a melatonin receptor. Regional analysis identified them together as a differentially methylated region consisting of 9 CpGs in/near MTNR1B, at which higher DNAm was associated with greater maternal age (PFDR = 6.92 × 10-8) in newborns. In childhood blood samples, these differences in blood DNAm of MTNR1B CpGs were nominally significant (p < 0.05) and retained the same positive direction, suggesting persistence of associations. Maternal age was also positively associated with higher DNA methylation at three CpGs in RTEL1-TNFRSF6B at birth (PFDR < 0.05) and nominally in childhood (p < 0.0001). Of the remaining 10 CpGs also persistent in childhood, methylation at cg26709300 in YPEL3/BOLA2B in external data was associated with expression of ITGAL, an immune regulator. While further study is needed to establish causality, particularly due to the small effect sizes observed, our results potentially support offspring DNAm as a mechanism underlying associations of maternal age with child health.

5.
Epigenetics ; 17(13): 1944-1955, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35786310

RESUMO

Epigenome-wide association studies (EWAS) are widely implemented in epidemiology, and the Illumina HumanMethylationEPIC BeadChip (EPIC) DNA microarray is the most-used technology. Recently, next-generation sequencing (NGS)-based methods, which assess DNA methylation at single-base resolution, have become more affordable and technically feasible. While the content of microarray technology is fixed, NGS-based approaches, such as the Roche Nimblegen, SeqCap Epi Enrichment System (SeqCap), offer the flexibility of targeting most CpGs in a gene. With the current usage of microarrays and emerging NGS-based technologies, it is important to establish whether data generated from the two platforms are comparable. We harnessed 112 samples from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort study and compared DNA methylation between the EPIC microarray and SeqCap for PON1 and nine additional candidate genes, by evaluating epigenomic coverage and correlations. We conducted multivariable linear regression and principal component analyses to assess the ability of the EPIC array and SeqCap to detect biological differences in gene methylation by the PON1-108 single nucleotide polymorphism. We found an overall high concordance (r = 0.84) between SeqCap and EPIC DNA methylation, among highly methylated and minimally methylated regions. However, substantial disagreement was present between the two methods in moderately methylated regions, with SeqCap measurements exhibiting greater within-site variation. Additionally, SeqCap did not capture PON1 SNP associated differences in DNA methylation that were evident with the EPIC array. Our findings indicate that microarrays perform well for analysing DNA methylation in large cohort studies but with limited coverage.


Assuntos
Arildialquilfosfatase , Metilação de DNA , Humanos , Arildialquilfosfatase/genética , Estudos de Coortes , Ilhas de CpG , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA