Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(12): 17630-17642, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679968

RESUMO

A novel technique for realization of configurable/one-time programmable (OTP) silicon photonic circuits is presented. Once the proposed photonic circuit is programmed, its signal routing is retained without the need for additional power consumption. This technology can potentially enable a multi-purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore, the production costs per chip can be reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for the configurable circuits in the form of erasable directional couplers (DCs) were designed and fabricated, using ion implanted waveguides. We demonstrate permanent switching of optical signals between the drop port and through the port of the DCs using a localized post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1×4 and 2×2 programmable switching circuits were fabricated and subsequently programmed.

2.
Opt Express ; 27(11): 15735-15749, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163765

RESUMO

We present interlayer slope waveguides, designed to guide light from one level to another in a multi-layer silicon photonics platform. The waveguide is fabricated from hydrogenated amorphous silicon (a-Si:H) film, deposited using hot-wire chemical vapor deposition (HWCVD) at a temperature of 230°C. The interlayer slope waveguide is comprises of a lower level input waveguide and an upper level output waveguide, connected by a waveguide on a slope, with vertical separation to isolate other crossing waveguides. Measured loss of 0.17 dB/slope was obtained for waveguide dimensions of 600 nm waveguide width (w) and 400 nm core thickness (h) at a wavelength of 1550 nm and for transverse electric (TE) mode polarization.

3.
Opt Lett ; 44(20): 5081-5084, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613269

RESUMO

We propose and experimentally demonstrate an apodized bidirectional grating coupler for high-efficiency, perfectly vertical coupling. Through grating apodization, the coupling efficiency (CE) can be notably improved, and the parasitic reflections can be minimized. For ease of fabrication, subwavelength gratings are introduced, which are also beneficial for the coupling performance. Simulation shows a record CE of 72%. We found that the coupler is quite robust to the variation of incidence mode field diameter and fiber misalignment. A CE of -1.8 dB is experimentally measured with a 1-dB bandwidth of 37 nm.

4.
Nano Lett ; 18(1): 610-617, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29272140

RESUMO

Hybrid integration of nanoplasmonic devices with silicon photonic circuits holds promise for a range of applications in on-chip sensing, field-enhanced and nonlinear spectroscopy, and integrated nanophotonic switches. Here, we demonstrate a new regime of photon-plasmon coupling by combining a silicon photonic resonator with plasmonic nanoantennas. Using principles from coherent perfect absorption, we make use of standing-wave light fields to maximize the photon-plasmon interaction strength. Precise placement of the broadband antennas with respect to the narrowband photonic racetrack modes results in controlled hybridization of only a subset of these modes. By combining antennas into groups of radiating dipoles with opposite phase, far-field scattering is effectively suppressed. We achieve ultrafast tuning of photon-plasmon hybridization including reconfigurable routing of the standing-wave input between two output ports. Hybrid photonic-plasmonic resonators provide conceptually new approaches for on-chip integrated nanophotonic devices.

5.
Opt Express ; 26(19): 24953-24963, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469603

RESUMO

Fabrication errors pose significant challenges on silicon photonics, promoting post-fabrication trimming technologies to ensure device performance. Conventional approaches involve multiple trimming and characterization steps, impacting overall fabrication complexity. Here we demonstrate a highly accurate trimming method combining laser annealing of germanium implanted silicon waveguide and real-time monitoring of device performance. Direct feedback of the trimming process is facilitated by a differential spectroscopic technique based on photomodulation. The resonant wavelength trimming accuracy is better than 0.15 nm for ring resonators with 20-µm radius. We also realize operating point trimming of Mach-Zehnder interferometers with germanium implanted arms. A phase shift of 1.2π is achieved by annealing a 7-µm implanted segment.

6.
Opt Lett ; 43(6): 1251-1254, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543264

RESUMO

We report the design and fabrication of a compact angled multimode interferometer (AMMI) on a 600 nm thick N-rich silicon nitride platform (n=1.92) optimized to match the International Telecommunication Union coarse wavelength division (de)multiplexing standard in the O telecommunication band. The demonstrated device exhibited a good spectral response with Δλ=20 nm, BW3 dB∼11 nm, IL<1.5 dB, and XT∼20 dB. Additionally, it showed a high tolerance to dimensional errors <120 pm/nm and low sensitivity to temperature variations <20 pm/°C, respectively. This device had a footprint of 0.02 mm×1.7 mm with the advantage of a simple design and a back-end-of-line compatible fabrication process that enables multilayer integration schemes due to its processing temperature <400°C.

7.
Sensors (Basel) ; 18(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261650

RESUMO

Hydrogel materials offer many advantages for chemical and biological sensoring due to their response to a small change in their environment with a related change in volume. Several designs have been outlined in the literature in the specific field of hydrogel-based optical sensors, reporting a large number of steps for their fabrication. In this work we present a three-dimensional, hydrogel-based sensor the structure of which is fabricated in a single step using thermal nanoimprint lithography. The sensor is based on a waveguide with a grating readout section. A specific hydrogel formulation, based on a combination of PEGDMA (Poly(Ethylene Glycol DiMethAcrylate)), NIPAAm (N-IsoPropylAcrylAmide), and AA (Acrylic Acid), was developed. This stimulus-responsive hydrogel is sensitive to pH and to water. Moreover, the hydrogel has been modified to be suitable for fabrication by thermal nanoimprint lithography. Once stimulated, the hydrogel-based sensor changes its topography, which is characterised physically by AFM and SEM, and optically using a specific optical set-up.

8.
Opt Express ; 25(15): 17864-17871, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789277

RESUMO

We present our recent work on fibre-chip grating couplers operating around 1310 nm. For the first time, we demonstrate the combination of dual-etch and apodization design approaches which may achieve a coupling efficiency of 85% (-0.7 dB). Subwavelength structures were employed to modify the coupling strength of the grating. -1.9 dB efficiency was measured from a first set of fabricated structures.

9.
Opt Express ; 25(22): 27310-27320, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092207

RESUMO

WDM components fabricated on the silicon-on-insulator platform have transmission characteristics that are sensitive to dimensional errors and temperature variations due to the high refractive index and thermo-optic coefficient of Si, respectively. We propose the use of NH3-free SiNx layers to fabricate athermal (de)multiplexers based on angled multimode interferometers (AMMI) in order to achieve good spectral responses with high tolerance to dimensional errors. With this approach we have shown that stoichiometric and N-rich SiNx layers can be used to fabricate AMMIs with cross-talk <30dB, insertion loss <2.5dB, sensitivity to dimensional errors <120pm/nm, and wavelength shift <10pm/°C.

10.
Opt Express ; 25(4): 3214-3221, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241537

RESUMO

We demonstrate design, fabrication, and characterization of two-dimensional photonic crystal (PhC) waveguides on a suspended silicon rich nitride (SRN) platform for applications at telecom wavelengths. Simulation results suggest that a 210 nm photonic band gap can be achieved in such PhC structures. We also developed a fabrication process to realize suspended PhC waveguides with a transmission bandwidth of 20 nm for a W1 PhC waveguide and over 70 nm for a W0.7 PhC waveguide. Using the Fabry-Pérot oscillations of the transmission spectrum we estimated a group index of over 110 for W1 PhC waveguides. For a W1 waveguide we estimated a propagation loss of 53 dB/cm for a group index of 37 and for a W0.7 waveguide the lowest propagation was 4.6 dB/cm.

11.
Opt Express ; 25(22): 27334-27340, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092209

RESUMO

Ultrahigh-Q Photonic Crystal cavities were realized in a suspended Silicon Rich Nitride (SiNx) platform for applications at telecom wavelengths. Using a line width modulated cavity design we achieved a simulated Q of 520,000 with a modal volume of 0.77(λ/n)3. The fabricated cavities were measured using the resonance scattering technique and we demonstrated a measured Q of 120,000. The experimental spectra at different input power also indicate that the non-linear losses are negligible in this material platform.

12.
Opt Express ; 25(22): 27431-27441, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092216

RESUMO

We report transmission measurements of germanium on silicon waveguides in the 7.5-8.5 µm wavelength range, with a minimum propagation loss of 2.5 dB/cm at 7.575 µm. However, we find an unexpected strongly increasing loss at higher wavelengths, potential causes of which we discuss in detail. We also demonstrate the first germanium on silicon multimode interferometers operating in this range, as well as grating couplers optimized for measurement using a long wavelength infrared camera. Finally, we use an implementation of the "cut-back" method for loss measurements that allows simultaneous transmission measurement through multiple waveguides of different lengths, and we use dicing in the ductile regime for fast and reproducible high quality optical waveguide end-facet preparation.

13.
Opt Lett ; 42(18): 3566-3569, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914903

RESUMO

A silicon nitride waveguide is a promising platform for integrated photonics, particularly due to its low propagation loss compared to other complementary metal-oxide-semiconductor compatible waveguides, including silicon-on-insulator. Input/output coupling in such thin optical waveguides is a key issue for practical implementations. Fiber-to-chip grating couplers in silicon nitride usually exhibit low coupling efficiency because the moderate index contrast leads to weak radiation strengths and poor directionality. Here, we present the first, to the best of our knowledge, experimental demonstration of a recently proposed apodized-imaging fiber-to-chip grating coupler in silicon nitride that images an in-plane waveguide mode to an optical fiber placed at a specific distance above the chip. By employing amplitude and phase apodization, the diffracted optical field of the grating is matched to the fiber mode. High grating directionality is achieved by using staircase grating teeth, which produce a blazing effect. Experimental results demonstrate an apodized-imaging grating coupler with a record coupling efficiency of -1.5 dB and a 3 dB bandwidth of 60 nm in the C-band.

14.
Appl Opt ; 56(31): 8769-8776, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091691

RESUMO

We present ring resonator (RR)-coupled Mach-Zehnder interferometers (MZIs) based on silicon-on-insulator rib waveguides, operating around the mid-IR wavelength of 3.8 µm. A number of different photonic integrated devices have been designed and fabricated experimentally to obtain the asymmetric Fano resonances in the mid-IR. We have investigated the influence of the coupling efficiency between the RR and the MZI as well as the phase shift between the two arms of the MZI on the Fano-type resonance spectral features, in agreement with theoretical predictions. Finally, wavelength-dependent Fano transmittances have been successfully measured with insertion losses up to ∼1 dB and extinction ratios of ∼20 dB. A slope of sharp Fano resonances as high as -574.6/µm has been achieved and estimated to be 35.5% higher than the slope of single RR Lorentzian-type resonances.

15.
Opt Lett ; 41(3): 610-3, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907436

RESUMO

We present Vernier-effect photonic microcavities based on a germanium-on-silicon technology platform, operating around the mid-infrared wavelength of 3.8 µm. Cascaded racetrack resonators have been designed to operate in the second regime of the Vernier effect, and typical Vernier comb-like spectra have been successfully demonstrated with insertion losses of ∼5 dB, maximum extinction ratios of ∼23 dB, and loaded quality factors higher than 5000. Furthermore, an add-drop racetrack resonator designed for a Vernier device has been characterized, exhibiting average insertion losses of 1 dB, extinction ratios of up to 18 dB, and a quality factor of ∼1700.

16.
Opt Lett ; 41(18): 4324-7, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628388

RESUMO

A broad transparency range of its constituent materials and compatibility with standard fabrication processes make germanium-on-silicon (Ge-on-Si) an excellent platform for the realization of mid-infrared photonic circuits. However, the comparatively large Ge waveguide thickness and its moderate refractive index contrast with the Si substrate hinder the implementation of efficient fiber-chip grating couplers. We report for the first time, to the best of our knowledge, a single-etch Ge-on-Si grating coupler with an inversely tapered access stage, operating at a 3.8 µm wavelength. Optimized grating excitation yields a coupling efficiency of -11 dB (7.9%), the highest value reported for a mid-infrared Ge-on-Si grating coupler, with reflectivity below -15 dB (3.2%). The large periodicity of our higher-order grating design substantially relaxes the fabrication constraints. We also demonstrate that a focusing geometry allows a 10-fold reduction in inverse taper length, from 500 to 50 µm.

17.
Sensors (Basel) ; 15(6): 13548-67, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26067193

RESUMO

In this paper, we propose a generalized procedure for the design of integrated Vernier devices for high performance chemical and biochemical sensing. In particular, we demonstrate the accurate control of the most critical design and fabrication parameters of silicon-on-insulator cascade-coupled racetrack resonators operating in the second regime of the Vernier effect, around 1.55 µm. The experimental implementation of our design strategies has allowed a rigorous and reliable investigation of the influence of racetrack resonator and directional coupler dimensions as well as of waveguide process variability on the operation of Vernier devices. Figures of merit of our Vernier architectures have been measured experimentally, evidencing a high reproducibility and a very good agreement with the theoretical predictions, as also confirmed by relative errors even lower than 1%. Finally, a Vernier gain as high as 30.3, average insertion loss of 2.1 dB and extinction ratio up to 30 dB have been achieved.

18.
Opt Express ; 22(20): 23990-4003, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25321975

RESUMO

In this paper we report the experimental demonstration of racetrack resonators in silicon-on-insulator technology platform operating in the mid-infrared wavelength range of 3.7-3.8 µm. Insertion loss lower than 1 dB and extinction ratio up to 30 dB were measured for single resonators. The experimental characterization of directional couplers and bending losses in silicon rib waveguides are also reported. Furthermore, we present the design and fabrication of cascade-coupled racetrack resonators based on the Vernier effect. Experimental spectra of Vernier architectures were demonstrated for the first time in the mid-infrared with insertion loss lower than 1 dB and maximum interstitial peak suppression of 10 dB.

19.
Microelectron Eng ; 112(100): 67-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24748699

RESUMO

In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods.

20.
Nanotechnology ; 22(5): 055301, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21178226

RESUMO

We describe a new technique for random surface texturing of a gallium nitride (GaN) light-emitting diode wafer through a mask-less dry etch process. This involves depositing a sub-monolayer film of silica nanospheres (typical diameter of 200 nm) and then subjecting the coated wafer to a dry etch process with enhanced physical bombardment. The silica spheres acting as nanotargets get sputtered and silica fragments are randomly deposited on the GaN epi-layer. Subsequently, the reactive component of the dry etch plasma etches through the exposed GaN surface. Silica fragments act as nanoparticles, locally masking the underlying GaN. The etch rate is much reduced at these sites and consequently a rough topography develops. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) inspections show that random topographic features at the scale of a few tens of nanometres are formed. Optical measurements using angle-resolved photoluminescence show that GaN light-emitting diode material thus roughened has the capability to extract more light from within the epilayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA