Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 31(16): 26496-26508, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710509

RESUMO

We present the first experimental realization of a new mitigation strategy for TMI based on controlling the phase shift between the modal intensity pattern and the thermally induced refractive index grating. If specific modulation parameters are applied while pulsing the seed and/or pump radiation, the direction of energy transfer is forced from the higher-order modes into the fundamental mode. In this way, the fiber amplifier can operate at an average output power significantly higher than the TMI threshold with a diffraction-limited beam profile. A stable beam profile is observed at an average output power that is 83% higher than the TMI threshold of the free-running system, with an intra-burst average power that is 4.15 times higher than the TMI threshold.

2.
Opt Express ; 31(6): 10633-10644, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157606

RESUMO

Transverse mode instability (TMI) represents the main limitation for the power scaling of fiber laser systems with a diffraction-limited beam quality. In this context, it has become increasingly important to find a cheap and reliable way to monitor and characterize TMI and distinguish this effect from other dynamic perturbations. In this work, with the help of a position-sensitive detector, a novel method is developed to characterize the TMI dynamics even in the presence of power fluctuations. The position information of the fluctuating beam is recorded in the X- and Y-axis of the detector, which are used to track the temporal evolution of the center of gravity of the beam. The trajectories described by the beam within a specific time window contain rich information about TMI, which can be used to gain further insight into this phenomenon.

3.
Opt Express ; 29(21): 34452-34464, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809235

RESUMO

In this work we present a novel way to manipulate the effect of transverse mode instability by inducing traveling waves in a high-power fiber system. What sets this technique apart is the fact that it allows controlling the direction of the modal energy flow, for the first time to the best of our knowledge. Thus, using the method proposed in this work it will be possible to transfer energy from the higher-order mode into the fundamental mode of the fiber, which mitigates the effect of transverse mode instability, but also to transfer energy from the fundamental mode into the higher-order mode. Our simulations indicate that this approach will work both below and above the threshold of transverse mode instability. In fact, our model reveals that it can be used to force a nearly pure fundamental mode output in the fiber laser system almost independently of the input coupling conditions. In this context, this technique represents the first attempt to exploit the physics behind the effect of transverse mode instability to increase the performance of fiber laser systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA