Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(11): e2112820119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254909

RESUMO

SignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, KUF1, that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. KUF1 expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Furanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Hidrolases/genética , Piranos/farmacologia , Arabidopsis/metabolismo , Plântula/genética , Plântula/metabolismo , Transdução de Sinais
2.
Plant Physiol ; 190(4): 2315-2334, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35984304

RESUMO

Class IV homeodomain leucine-zipper transcription factors (HD-Zip IV TFs) are key regulators of epidermal differentiation that are characterized by a DNA-binding HD in conjunction with a lipid-binding domain termed steroidogenic acute regulatory-related lipid transfer (START). Previous work established that the START domain of GLABRA2 (GL2), a HD-Zip IV member from Arabidopsis (Arabidopsis thaliana), is required for TF activity. Here, we addressed the functions and possible interactions of START and the HD in DNA binding, dimerization, and protein turnover. Deletion analysis of the HD and missense mutations of a conserved lysine (K146) resulted in phenotypic defects in leaf trichomes, root hairs, and seed mucilage, similar to those observed for START domain mutants, despite nuclear localization of the respective proteins. In vitro and in vivo experiments demonstrated that while HD mutations impair binding to target DNA, the START domain is dispensable for DNA binding. Vice versa, protein interaction assays revealed impaired GL2 dimerization for multiple alleles of START mutants, but not HD mutants. Using in vivo cycloheximide chase experiments, we provided evidence for the role of START, but not HD, in maintaining protein stability. This work advances our mechanistic understanding of HD-Zip TFs as multidomain regulators of epidermal development in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Dimerização , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina , DNA/metabolismo , Lipídeos
3.
Plant Cell ; 32(8): 2639-2659, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434855

RESUMO

Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCFMAX2 and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis (Arabidopsis thaliana). We find evidence that SMAX1 is degraded by KAI2-SCFMAX2 but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor-target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Furanos/farmacologia , Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteólise , Piranos/farmacologia , Motivos de Aminoácidos , Proteínas de Transporte/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sequência Conservada , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hidrolases/química , Lactonas/farmacologia , Extratos Vegetais , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Deleção de Sequência , Relação Estrutura-Atividade , Nicotiana/efeitos dos fármacos
4.
New Phytol ; 230(3): 1003-1016, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33474738

RESUMO

Strigolactones and karrikins are butenolide molecules that regulate plant growth. They are perceived by the α/ß-hydrolase DWARF14 (D14) and its homologue KARRIKIN INSENSITIVE2 (KAI2), respectively. Plant-derived strigolactones have a butenolide ring with a methyl group that is essential for bioactivity. By contrast, karrikins are abiotic in origin, and the butenolide methyl group is nonessential. KAI2 is probably a receptor for an endogenous butenolide, but the identity of this compound remains unknown. Here we characterise the specificity of KAI2 towards differing butenolide ligands using genetic and biochemical approaches. We find that KAI2 proteins from multiple species are most sensitive to desmethyl butenolides that lack a methyl group. Desmethyl-GR24 and desmethyl-CN-debranone are active by KAI2 but not D14. They are more potent KAI2 agonists compared with their methyl-substituted reference compounds both in vitro and in plants. The preference of KAI2 for desmethyl butenolides is conserved in Selaginella moellendorffii and Marchantia polymorpha, suggesting that it is an ancient trait in land plant evolution. Our findings provide insight into the mechanistic basis for differential ligand perception by KAI2 and D14, and support the view that the endogenous substrates for KAI2 and D14 have distinct chemical structures and biosynthetic origins.


Assuntos
Proteínas de Arabidopsis , Lactonas , 4-Butirolactona/análogos & derivados , Proteínas de Arabidopsis/genética , Hidrolases , Ligantes , Reguladores de Crescimento de Plantas
5.
Plant Cell ; 26(5): 2184-2200, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24824485

RESUMO

The class IV homeodomain leucine zipper transcription factor GLABRA2 (GL2) acts in a complex regulatory circuit that regulates the differentiation of trichomes in Arabidopsis thaliana. We describe a genetic interaction with HOMEODOMAIN GLABROUS11 (HDG11), previously identified as a negative regulator of trichome branching. gl2 hdg11 double mutants display enhanced trichome cell-type differentiation defects. Transgenic expression of HDG11 using the GL2 promoter partially suppresses gl2 trichome phenotypes. Vice versa, expression of GL2 under the control of its native promoter partially complements hdg11 ectopic branching. Since gl2 hdg11 and gl2 myb23 double mutants and the triple mutant display similar trichome differentiation defects, we investigated a connection to the R2R3-MYB transcription factor MYB23. We show that MYB23 transcript levels are significantly reduced in shoots from gl2 mutants and that GL2 can drive the expression of a MYB23-promoter fusion to green fluorescent protein. Yeast one-hybrid, chromatin immunoprecipitation, and in planta reporter gene experiments indicate that an L1-box in the MYB23 promoter acts as a GL2 binding site. Taken together, our findings reveal a functional redundancy between GL2 and HDG11, two homeodomain leucine zipper transcription factors previously thought to mediate opposing functions in trichome morphogenesis. A model is proposed in which GL2 transcript levels are maintained through a positive feedback loop involving GL2 activation of MYB23.

6.
BMC Biol ; 12: 70, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25159688

RESUMO

BACKGROUND: Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains were first identified from mammalian proteins that bind lipid/sterol ligands via a hydrophobic pocket. In plants, predicted START domains are predominantly found in homeodomain leucine zipper (HD-Zip) transcription factors that are master regulators of cell-type differentiation in development. Here we utilized studies of Arabidopsis in parallel with heterologous expression of START domains in yeast to investigate the hypothesis that START domains are versatile ligand-binding motifs that can modulate transcription factor activity. RESULTS: Our results show that deletion of the START domain from Arabidopsis Glabra2 (GL2), a representative HD-Zip transcription factor involved in differentiation of the epidermis, results in a complete loss-of-function phenotype, although the protein is correctly localized to the nucleus. Despite low sequence similarly, the mammalian START domain from StAR can functionally replace the HD-Zip-derived START domain. Embedding the START domain within a synthetic transcription factor in yeast, we found that several mammalian START domains from StAR, MLN64 and PCTP stimulated transcription factor activity, as did START domains from two Arabidopsis HD-Zip transcription factors. Mutation of ligand-binding residues within StAR START reduced this activity, consistent with the yeast assay monitoring ligand-binding. The D182L missense mutation in StAR START was shown to affect GL2 transcription factor activity in maintenance of the leaf trichome cell fate. Analysis of in vivo protein-metabolite interactions by mass spectrometry provided direct evidence for analogous lipid-binding activity in mammalian and plant START domains in the yeast system. Structural modeling predicted similar sized ligand-binding cavities of a subset of plant START domains in comparison to mammalian counterparts. CONCLUSIONS: The START domain is required for transcription factor activity in HD-Zip proteins from plants, although it is not strictly necessary for the protein's nuclear localization. START domains from both mammals and plants are modular in that they can bind lipid ligands to regulate transcription factor function in a yeast system. The data provide evidence for an evolutionarily conserved mechanism by which lipid metabolites can orchestrate transcription. We propose a model in which the START domain is used by both plants and mammals to regulate transcription factor activity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Fosfoproteínas/genética , Fatores de Transcrição/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Ligantes , Espectrometria de Massas , Camundongos , Organismos Geneticamente Modificados/genética , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
7.
Plant Direct ; 6(3): e389, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35355884

RESUMO

DWARF14 (D14) is an ɑ/ß-hydrolase and receptor for the plant hormone strigolactone (SL) in angiosperms. Upon SL perception, D14 works with MORE AXILLARY GROWTH2 (MAX2) to trigger polyubiquitination and degradation of DWARF53(D53)-type proteins in the SUPPRESSOR OF MAX2 1-LIKE (SMXL) family. We used CRISPR-Cas9 to generate knockout alleles of the two homoeologous D14 genes in the Nicotiana benthamiana genome. The Nbd14a,b double mutant had several phenotypes that are consistent with the loss of SL perception in other plants, including increased axillary bud outgrowth, reduced height, shortened petioles, and smaller leaves. A ratiometric fluorescent reporter system was used to monitor degradation of SMXL7 from Arabidopsis thaliana (AtSMXL7) after transient expression in N. benthamiana and treatment with the strigolactone analog GR24. AtSMXL7 was degraded after treatment with GR245DS, which has the stereochemical configuration of natural SLs, as well as its enantiomer GR24 ent-5DS. In Nbd14a,b leaves, AtSMXL7 abundance was unaffected by rac-GR24 or either GR24 stereoisomer. Transient coexpression of AtD14 with the AtSMXL7 reporter in Nbd14a,b restored the degradation response to rac-GR24, but required an active catalytic triad. We used this platform to evaluate the ability of several AtD14 mutants that had not been characterized in plants to target AtSMXL7 for degradation.

8.
Plant Commun ; 3(2): 100303, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35529949

RESUMO

The effects of the phytohormone strigolactone (SL) and smoke-derived karrikins (KARs) on plants are generally distinct, despite the fact that they are perceived through very similar mechanisms. The homologous receptors DWARF14 (D14) and KARRIKIN-INSENSITIVE2 (KAI2), together with the F-box protein MORE AXILLARY GROWTH2 (MAX2), mediate SL and KAR responses, respectively, by targeting different SMAX1-LIKE (SMXL) family proteins for degradation. These mechanisms are putatively well-insulated, with D14-MAX2 targeting SMXL6, SMXL7, and SMXL8 and KAI2-MAX2 targeting SMAX1 and SMXL2 in Arabidopsis thaliana. Recent evidence challenges this model. We investigated whether D14 can target SMAX1 and whether this occurs naturally. Genetic analysis indicates that the SL analog GR24 promotes D14-SMAX1 crosstalk. Although D14 shows weaker interactions with SMAX1 than with SMXL2 or SMXL7, D14 mediates GR24-induced degradation of SMAX1 in plants. Osmotic stress triggers SMAX1 degradation, which is protective, through SL biosynthesis and signaling genes. Thus, D14-SMAX1 crosstalk may be beneficial and not simply a vestige of the evolution of the SL pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Compostos Heterocíclicos com 3 Anéis , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Pressão Osmótica
9.
Bio Protoc ; 10(17): e3747, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659407

RESUMO

Ratiometric reporters are tools to dynamically measure the relative abundance of a protein of interest. In these systems, a target protein fused to a fluorescent or bioluminescent reporter is expressed with fixed stoichiometry to a reference protein fused to a second reporter. Both fusion proteins are encoded on a single transcript but are separated during translation by a 2A "self-cleaving" peptide. This approach enables changes in the relative abundance of a target protein to be detected sensitively, reducing variability in expression of the ratiometric reporter transgene that may occur across different tissues or transformation events. We recently developed a set of Gateway-compatible plant transformation vectors termed pRATIO that combine a variety of promoters, fluorescent and bioluminescent reporters, and 2A peptides derived from foot-and-mouth disease virus. Here, we describe in detail how to use the dual-fluorescent ratiometric reporter pRATIO3212 to examine the relative abundance of a target protein after transient expression in Nicotiana benthamiana leaves. For this example, we analyze degradation of the SUPPRESSOR OF MAX2 1 (SMAX1) protein from Arabidopsis thaliana in response to treatments with karrikins and rac-GR24. This protocol provides a simple, rapid, and readily scalable method for in vivo analysis of relative protein abundance in Agrobacterium-infiltrated Nicotiana leaf tissues.

10.
Plant Direct ; 4(6): e00231, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32582876

RESUMO

Ratiometric reporter systems enable comparisons of the abundance of a protein of interest, or "target," relative to a reference protein. Both proteins are encoded on a single transcript but are separated during translation. This arrangement bypasses the potential for discordant expression that can arise when the target and reference proteins are encoded by separate genes. We generated a set of 18 Gateway-compatible vectors termed pRATIO that combine a variety of promoters, fluorescent, and bioluminescent reporters, and 2A "self-cleaving" peptides. These constructs are easily modified to produce additional combinations or introduce new reporter proteins. We found that mScarlet-I provides the best signal-to-noise ratio among several fluorescent reporter proteins during transient expression experiments in Nicotiana benthamiana. Firefly and Gaussia luciferase also produce high signal-to-noise in N. benthamiana. As proof of concept, we used this system to investigate whether degradation of the receptor KAI2 after karrikin treatment is influenced by its subcellular localization. KAI2 is normally found in the cytoplasm and the nucleus of plant cells. In N. benthamiana, karrikin-induced degradation of KAI2 was only observed when it was retained in the nucleus. These vectors are tools to easily monitor in vivo the abundance of a protein that is transiently expressed in plants, and will be particularly useful for investigating protein turnover in response to different stimuli.

11.
Curr Opin Plant Biol ; 33: 57-63, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27318656

RESUMO

Strigolactones are plant hormones that control diverse aspects of plant growth, but are also exuded into soil as recruitment signals for arbuscular mycorrhizal fungi interactions. Highly damaging parasitic weeds in the Orobanchaceae family have coopted strigolactones as germination cues that indicate the presence of a host. Recent studies have established how strigolactones are actively transported within and out of plants. Key components of the strigolactone signaling system have been identified, including strigolactone receptors in angiosperms and parasites, as well as downstream targets that are polyubiquitinated and proteolyzed following strigolactone perception. The basis for protein-protein interactions among these signaling components has also been explored. We propose several strategies to translate current knowledge of strigolactone transport and signaling into parasite control methods.


Assuntos
Gossypium/parasitologia , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Striga/fisiologia , Controle de Plantas Daninhas , Plantas Daninhas/fisiologia
12.
Cancer Res ; 68(20): 8240-8, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18922895

RESUMO

Renal cell carcinoma (RCC) represents one of the most resistant tumors to radiation and chemotherapy. Current therapies for RCC patients are inefficient due to the lack of diagnostic and therapeutic markers. Our recent studies have suggested an association of sperm-associated antigen 9 (SPAG9) with ovarian carcinomas. In the present study, we investigated the clinical relevance of SPAG9 in RCC patients. RT-PCR analysis showed expression of SPAG9 transcript in RCC tissues and RCC cell lines. In situ RNA hybridization and immunohistochemistry analyses confirmed the expression of SPAG9 in 88% of cancer patients, suggesting that SPAG9 participates in renal cancer. In addition, immunoblotting and ELISA analyses revealed a humoral immune response against SPAG9 in the sera of RCC patients but not in healthy individuals. Consistent with the clinical findings, knockdown of SPAG9 expression in RCC cells with specific siRNA significantly reduced cell growth and colony formation. Using in vitro wound healing and Matrigel invasion assays, we found that cell migration and invasive ability were also significantly inhibited. Furthermore, in vivo xenograft studies in nude mice revealed that administration of a SPAG9 siRNA plasmid significantly inhibited tumor growth. In conclusion, SPAG9 expression is associated with clinicopathologic features of tumors, suggesting that SPAG9 could contribute to the early spread of cancer. These results indicate that SPAG9 may have a role in tumor development and metastasis and thus could serve as a novel target for early detection and treatment of RCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Espermatozoides/imunologia , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Adulto , Idoso , Animais , Anticorpos/sangue , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Hibridização In Situ , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , RNA Mensageiro/análise , RNA Interferente Pequeno/farmacologia , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA