Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38950902

RESUMO

CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are frequently mutated in cancer. Our previous study identified a small subclass of CTCF-BSs that are resistant to CTCF knock down, termed persistent CTCF binding sites (P-CTCF-BSs). P-CTCF-BSs show high binding conservation and potentially regulate cell-type constitutive 3D chromatin architecture. Here, using ICGC sequencing data we made the striking observation that P-CTCF-BSs display a highly elevated mutation rate in breast and prostate cancer when compared to all CTCF-BSs. To address whether P-CTCF-BS mutations are also enriched in other cell-types, we developed CTCF-INSITE-a tool utilising machine learning to predict persistence based on genetic and epigenetic features of experimentally-determined P-CTCF-BSs. Notably, predicted P-CTCF-BSs also show a significantly elevated mutational burden in all 12 cancer-types tested. Enrichment was even stronger for P-CTCF-BS mutations with predicted functional impact to CTCF binding and chromatin looping. Using in vitro binding assays we validated that P-CTCF-BS cancer mutations, predicted to be disruptive, indeed reduced CTCF binding. Together this study reveals a new subclass of cancer specific CTCF-BS DNA mutations and provides insights into their importance in genome organization in a pan-cancer setting.

2.
Blood ; 127(14): 1743-51, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26773046

RESUMO

Human platelets contain microRNAs (miRNAs) and miRNA processing machinery, but their contribution to platelet function remains incompletely understood. Here, we show that murine megakaryocyte (MK)-specific knockdown of Dicer1, the ribonuclease that cleaves miRNA precursors into mature miRNAs, reduces the level of the majority of miRNAs in platelets. This leads to altered platelet messenger RNA (mRNA) expression profiles and mild thrombocytopenia. Fibrinogen receptor subunits Itga2b (αIIb) and Itgb3 (ß3) mRNAs were among the differentially expressed transcripts that are increased in platelets lacking Dicer1. Argonaute 2 (Ago2), a member of the miRNA silencing complex, co-immunoprecipitated with αIIband ß3mRNAs in wild-type platelets. Furthermore, co-immunoprecipitation experiments suggested reduced αIIb/ß3/Ago2 complexes in miRNA-deficient platelets. These results suggested that miRNAs regulate both integrin subunits. Subsequent 3' untranslated region luciferase reporter assays confirmed that the translation of both αIIband ß3mRNAs can be regulated by miRNAs miR-326, miR-128, miR-331, and miR-500. Consistent with these molecular changes, the deletion ofDicer1resulted in increased surface expression of integrins αIIband ß3, and enhanced platelet binding to fibrinogen in vivo and in vitro. Heightened platelet reactivity, shortened tail-bleeding time, and reduced survival following collagen/epinephrine-induced pulmonary embolism were also observed in Dicer1-deficient animals. CombinedPf4-cre-mediated deletion of Drosha and Dicer1 did not significantly exacerbate phenotypes observed in single Dicer1 knockout mice. In summary, these findings indicate that Dicer1-dependent generation of mature miRNAs in late-stage MKs and platelets modulates the expression of target mRNAs important for the hemostatic and thrombotic function of platelets.


Assuntos
Plaquetas/metabolismo , RNA Helicases DEAD-box/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Integrina alfa2/biossíntese , Integrina alfa2/genética , Integrina beta3/biossíntese , Integrina beta3/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Embolia Pulmonar/induzido quimicamente , Embolia Pulmonar/genética , Embolia Pulmonar/metabolismo , RNA Mensageiro/genética , Ribonuclease III/genética
3.
Bioorg Med Chem ; 22(3): 1029-39, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24398380

RESUMO

High-throughput screening of a small-molecule library identified a 5-triazolo-2-arylpyridazinone as a novel inhibitor of the important glycolytic enzyme 6-phosphofructo-2-kinase/2,6-bisphosphatase 3 (PFKFB3). Such inhibitors are of interest due to PFKFB3's control of the important glycolytic pathway used by cancer cells to generate ATP. A series of analogues was synthesized to study structure-activity relationships key to enzyme inhibition. Changes to the triazolo or pyridazinone rings were not favoured, but limited-size substitutions on the aryl ring provided modest increases in potency against the enzyme. Selected analogues and literature-described inhibitors were evaluated for their ability to suppress the glycolytic pathway, as detected by a decrease in lactate production, but none of these compounds demonstrated such suppression at non-cytotoxic concentrations.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fosfofrutoquinase-2/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Glicólise/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Piridazinas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
4.
Nat Struct Mol Biol ; 31(3): 498-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182927

RESUMO

Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Decitabina/farmacologia , Decitabina/uso terapêutico , Decitabina/metabolismo , Epigenoma , Metilação de DNA/genética , Cromatina , Epigênese Genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica
5.
STAR Protoc ; 2(2): 100514, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34013210

RESUMO

Chromatin immunoprecipitation (ChIP) is used to study interactions between proteins and DNA. Nuclear lysates are prepared, and chromatin is fragmented by sonication. Antibodies are used to purify a protein of interest (e.g., a transcription factor or histone mark) along with any bound DNA. The genomic binding sites can then be mapped by sequencing the bound DNA (ChIP-seq) or by qPCR if binding sites are already known. ChIP requires optimization for each cell type, and success is highly antibody dependent. This protocol can be adapted to other cell lines with careful optimization. For complete details on the use and execution of this protocol, please refer to Holliday et al. (2021).


Assuntos
Neoplasias da Mama/metabolismo , Imunoprecipitação da Cromatina , Código das Histonas , Glândulas Mamárias Humanas/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos
6.
Nat Commun ; 11(1): 54, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911579

RESUMO

The architectural protein CTCF is a mediator of chromatin conformation, but how CTCF binding to DNA is orchestrated to maintain long-range gene expression is poorly understood. Here we perform RNAi knockdown to reduce CTCF levels and reveal a shared subset of CTCF-bound sites are robustly resistant to protein depletion. The 'persistent' CTCF sites are enriched at domain boundaries and chromatin loops constitutive to all cell types. CRISPR-Cas9 deletion of 2 persistent CTCF sites at the boundary between a long-range epigenetically active (LREA) and silenced (LRES) region, within the Kallikrein (KLK) locus, results in concordant activation of all 8 KLK genes within the LRES region. CTCF genome-wide depletion results in alteration in Topologically Associating Domain (TAD) structure, including the merging of TADs, whereas TAD boundaries are not altered where persistent sites are maintained. We propose that the subset of essential CTCF sites are involved in cell-type constitutive, higher order chromatin architecture.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Epigênese Genética , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Cromatina/química , Cromatina/genética , DNA/genética , DNA/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos
7.
Nat Commun ; 10(1): 416, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679435

RESUMO

DNA replication timing is known to facilitate the establishment of the epigenome, however, the intimate connection between replication timing and changes to the genome and epigenome in cancer remain largely uncharacterised. Here, we perform Repli-Seq and integrated epigenome analyses and demonstrate that genomic regions that undergo long-range epigenetic deregulation in prostate cancer also show concordant differences in replication timing. A subset of altered replication timing domains are conserved across cancers from different tissue origins. Notably, late-replicating regions in cancer cells display a loss of DNA methylation, and a switch in heterochromatin features from H3K9me3-marked constitutive to H3K27me3-marked facultative heterochromatin. Finally, analysis of 214 prostate and 35 breast cancer genomes reveal that late-replicating regions are prone to cis and early-replication to trans chromosomal rearrangements. Together, our data suggests that the nature of chromosomal rearrangement in cancer is related to the spatial and temporal positioning and altered epigenetic states of early-replicating compared to late-replicating loci.


Assuntos
Aberrações Cromossômicas , Período de Replicação do DNA/fisiologia , Epigênese Genética/fisiologia , Neoplasias/genética , Neoplasias da Mama , Linhagem Celular Tumoral , Metilação de DNA , Replicação do DNA , Desoxirribonuclease I/análise , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Genômica , Heterocromatina , Humanos , Masculino , Neoplasias da Próstata , Sequenciamento Completo do Genoma
8.
Cancer Cell ; 35(2): 297-314.e8, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30753827

RESUMO

Promoter CpG islands are typically unmethylated in normal cells, but in cancer a proportion are subject to hypermethylation. Using methylome sequencing we identified CpG islands that display partial methylation encroachment across the 5' or 3' CpG island borders. CpG island methylation encroachment is widespread in prostate and breast cancer and commonly associates with gene suppression. We show that the pattern of H3K4me1 at CpG island borders in normal cells predicts the different modes of cancer CpG island hypermethylation. Notably, genetic manipulation of Kmt2d results in concordant alterations in H3K4me1 levels and CpG island border DNA methylation encroachment. Our findings suggest a role for H3K4me1 in the demarcation of CpG island methylation borders in normal cells, which become eroded in cancer.


Assuntos
Ilhas de CpG , Metilação de DNA , DNA de Neoplasias/metabolismo , Histonas/metabolismo , Neoplasias/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA