Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(4): 1105-1111, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36131765

RESUMO

The combination of lithographic methods and sol gel bottom-up techniques is a promising approach for nanopatterning substrates. The integration and scalable fabrication of such substrates are of great interest for the development of nanowire-based materials opening potentialities in new technologies. We demonstrate the deposition of ordered mesoporous silica into nanopatterned silica substrates by dip coating. Using scanning electron microscopy and grazing incidence small angle X-ray scattering, the effect of the sol composition on the pore ordering was probed. Optimising the sol composition using anodic alumina membranes as confined spaces, we showed how the pH controlled the transformation from circular to columnar mesophase. Vertical mesopores were obtained with very good repeatability. The effect of the sol chemistry on the surfactant curvature was then shown to be similar in nanopatterned substrates made by e-beam lithography.

2.
Adv Mater ; 32(25): e2001534, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419202

RESUMO

New methods for achieving high-quality conducting oxide metasurfaces are of great importance for a range of emerging applications from infrared thermal control coatings to epsilon-near-zero nonlinear optics. This work demonstrates the viability of plasma patterning as a technique to selectively and locally modulate the carrier density in planar Al-doped ZnO (AZO) metasurfaces without any associated topographical surface profile. This technique stands in strong contrast to conventional physical patterning which results in nonplanar textured surfaces. The approach can open up a new route to form novel photonic devices with planar metasurfaces, for example, antireflective coatings and multi-layer devices. To demonstrate the performance of the carrier-modulated AZO metasurfaces, two types of devices are realized using the demonstrated plasma patterning. A metasurface optical solar reflector is shown to produce infrared emissivity equivalent to a conventional etched design. Second, a multiband metasurface is achieved by integrating a Au visible-range metasurface on top of the planar AZO infrared metasurface. Independent control of spectral bands without significant cross-talk between infrared and visible functionalities is achieved. Local carrier tuning of conducting oxide films offers a conceptually new approach for oxide-based photonics and nanoelectronics and opens up new routes for integrated planar metasurfaces in optical technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA