Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aquaculture ; 536: 736460, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33564203

RESUMO

Outbreaks of COVID-19 (coronavirus disease 2019) have been reported in workers in fish farms and fish processing plants arising from person-to-person transmission, raising concerns about aquatic animal food products' safety. A better understanding of such incidents is important for the aquaculture industry's sustainability, particularly with the global trade in fresh and frozen aquatic animal food products where contaminating virus could survive for some time. Despite a plethora of COVID-19-related scientific publications, there is a lack of reports on the risk of contact with aquatic food animal species or their products. This review aimed to examine the potential for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) contamination and the potential transmission via aquatic food animals or their products and wastewater effluents. The extracellular viability of SARS-CoV-2 and how the virus is spread are reviewed, supporting the understanding that contaminated cold-chain food sources may introduce SAR-CoV-2 via food imports although the virus is unlikely to infect humans through consumption of aquatic food animals or their products or drinking water; i.e., SARS-CoV-2 is not a foodborne virus and should not be managed as such but instead through strong, multifaceted public health interventions including physical distancing, rapid contact tracing, and testing, enhanced hand and respiratory hygiene, frequent disinfection of high-touch surfaces, isolation of infected workers and their contacts, as well as enhanced screening protocols for international seafood trade.

2.
Virol J ; 16(1): 41, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940162

RESUMO

BACKGROUND: Piscine orthoreovirus (PRV) is an emergent virus in salmon aquaculture belonging to the family Reoviridae. PRV is associated with a growing list of pathological conditions including heart and skeletal inflammation (HSMI) of farmed Atlantic salmon. Despite widespread PRV infection in commercially farmed Atlantic salmon, information on PRV prevalence and on the genetic sequence variation of PRV in Atlantic salmon on the north Pacific Coast is limited. METHODS: Feral Atlantic salmon caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound were sampled. Fish tissues were tested for PRV by RT-qPCR assay for segment L1 and conventional RT-PCR for PRV segment S1. The PCR products were sequenced and their relationship to PRV strains in GenBank was determined using phylogenetic analysis and nucleotide and amino acid homology comparisons. RESULTS: Following the escape of 253,000 Atlantic salmon from a salmon farm in Washington State, USA, 72/73 tissue samples from 27 Atlantic salmon captured shortly after the escape tested PRV-positive. We estimate PRV-prevalence in the source farm population at 95% or greater. The PRV found in the fish was identified as PRV sub-genotype Ia and very similar to PRV from farmed Atlantic salmon in Iceland. This correlates with the source of the fish in the farm. Eggs of infected fish were positive for PRV indicating the possibility of vertical transfer and spread with fish egg transports. CONCLUSIONS: PRV prevalence was close to 100% in farmed Atlantic salmon that were caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound. The PRV strains present in the escaped Atlantic salmon were very similar to the PRV strain reported in farmed Atlantic salmon from the source hatchery in Iceland that was used to stock commercial aquaculture sites in Washington State. This study emphasizes the need to screen Atlantic salmon broodstock for PRV, particularly where used to supply eggs to the global Atlantic salmon farming industry thereby improving our understanding of PRV epidemiology.


Assuntos
Doenças dos Peixes/virologia , Orthoreovirus/genética , Infecções por Reoviridae/veterinária , Salmo salar/virologia , Animais , Aquicultura , Colúmbia Britânica/epidemiologia , Genótipo , Coração/virologia , Inflamação , Orthoreovirus/isolamento & purificação , Orthoreovirus/patogenicidade , Filogenia , Reação em Cadeia da Polimerase , Prevalência , Infecções por Reoviridae/epidemiologia , Washington/epidemiologia
3.
Virol J ; 16(1): 60, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064382

RESUMO

In the original publication of the article [1], as the quotation below was included without specific permission from Dr. Gary Marty, which is against the Virology Journal guidelines for the citation of unpublished data, all authors request to delete it from their article.

4.
Nat Methods ; 10(11): 1063-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24173381

RESUMO

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Assuntos
Serviços de Informação , Reação em Cadeia da Polimerase/métodos , Coleta de Dados
5.
Virol J ; 13: 98, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296722

RESUMO

BACKGROUND: Heart and skeletal muscle inflammation (HSMI) is an emerging disease of marine-farmed Atlantic salmon Salmo salar, first recognized in 1999 in Norway, and recently associated with piscine orthoreovirus (PRV) infection. To date, HSMI lesions with presence of PRV have only been described in marine-farmed Atlantic salmon in Norway. A new HSMI-like disease in rainbow trout Oncorhynchus mykiss associated with a PRV-related virus has also been reported in Norway. METHODS: Sampling of Atlantic salmon and coho salmon was done during potential disease outbreaks, targeting lethargic/moribund fish. Fish were necropsied and tissues were taken for histopathologic analysis and testing for PRV by RT-qPCR assay for segment L1 and conventional RT-PCR for PRV segment S1. The PCR products were sequenced and their relationship to PRV strains in GenBank was determined using phylogenetic analysis and nucleotide and amino acid homology comparisons. RESULTS: The Atlantic salmon manifested the classical presentation of HSMI with high PRV virus loads (low Ct values) as described in Norway. The coho salmon with low Ct values had myocarditis but only in the spongy layer, the myositis of red muscle in general was mild, and the hepatic necrosis was severe. Upon phylogenetic analysis of PRV segment S1 sequences, all the Chilean PRV strains from Atlantic salmon grouped as sub-genotype Ib, whereas the Chilean PRV strains from coho salmon were more diversified, grouping in both sub-genotypes Ia and Ib and others forming a distinct new phylogenetic cluster, designated Genotype II that included the Norwegian PRV-related virus. CONCLUSIONS: To our knowledge the present work constitutes the first published report of HSMI lesions with presence of PRV in farmed Atlantic salmon outside of Europe, and the first report of HSMI-like lesions with presence of PRV in coho salmon in Chile. The Chilean PRV strains from coho salmon are more genetically diversified than those from Atlantic salmon, and some form a distinct new phylogenetic cluster, designated Genotype II.


Assuntos
Doenças dos Peixes/virologia , Genótipo , Orthoreovirus/classificação , Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/veterinária , Animais , Aquicultura , Basidiomycota , Chile , Análise por Conglomerados , Doenças dos Peixes/patologia , Histocitoquímica , Oncorhynchus kisutch , Oncorhynchus mykiss , Orthoreovirus/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Reoviridae/patologia , Salmo salar , Análise de Sequência de DNA , Varicellovirus
6.
Virol J ; 13: 3, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26732772

RESUMO

BACKGROUND: Infectious salmon anaemia (ISA) virus (ISAV) belongs to the genus Isavirus, family Orthomyxoviridae. ISAV occurs in two basic genotypes, North American and European. The European genotype is more widespread and shows greater genetic variation and greater virulence variation than the North American genotype. To date, all of the ISAV isolates from the clinical disease, ISA, have had deletions in the highly polymorphic region (HPR) on ISAV segment 6 (ISAV-HPRΔ) relative to ISAV-HPR0, named numerically from ISAV-HPR1 to over ISAV-HPR30. ISA outbreaks have only been reported in farmed Atlantic salmon, although ISAV has been detected by RT-PCR in wild fish. It is recognized that asymptomatically ISAV-infected fish exist. There is no universally accepted ISAV RT-qPCR TaqMan® assay. Most diagnostic laboratories use the primer-probe set targeting a 104 bp-fragment on ISAV segment 8. Some laboratories and researchers have found a primer-probe set targeting ISAV segment 7 to be more sensitive. Other researchers have published different ISAV segment 8 primer-probe sets that are highly sensitive. METHODS: In this study, we tested 1,106 fish tissue samples collected from (i) market-bought farmed salmonids and (ii) wild salmon from throughout British Columbia (BC), Canada, for ISAV using real time RT-qPCR targeting segment 8 and/or conventional RT-PCR with segment 8 primers and segment 6 HPR primers, and by virus isolation attempts using Salmon head kidney (SHK-1 and ASK-2) cell line monolayers. The sequences from the conventional PCR products were compared by multiple alignment and phylogenetic analyses. RESULTS: Seventy-nine samples were "non-negative" with at least one of these tests in one or more replicates. The ISAV segment 6 HPR sequences from the PCR products matched ISAV variants, HPR5 on 29 samples, one sample had both HPR5 and HPR7b and one matched HPR0. All sequences were of European genotype. In addition, alignment of sequences of the conventional PCR product segment 8 showed they had a single nucleotide mutation in the region of the probe sequence and a 9-nucleotide overlap with the reverse primer sequence of the real time RT-qPCR assay. None of the classical ISAV segment 8 sequences in the GenBank have this mutation in the probe-binding site of the assay, suggesting the presence of a novel ISAV variant in BC. A phylogenetic tree of these sequences showed that some ISAV sequences diverted early from the classical European genotype sequences, while others have evolved separately. All virus isolation attempts on the samples were negative, and thus the samples were considered "negative" in terms of the threshold trigger set for Canadian federal regulatory action; i.e., successful virus isolation in cell culture. CONCLUSIONS: This is the first published report of the detection of ISAV sequences in fish from British Columbia, Canada. The sequences detected, both of ISAV-HPRΔ and ISAV-HPR0 are of European genotype. These sequences are different from the classical ISAV segment 8 sequences, and this difference suggests the presence of a new ISAV variant of European genotype in BC. Our results further suggest that ISAV-HPRΔ strains can be present without clinical disease in farmed fish and without being detected by virus isolation using fish cell lines.


Assuntos
Variação Genética , Genótipo , Isavirus/classificação , Isavirus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Colúmbia Britânica , Doenças dos Peixes/virologia , Dados de Sequência Molecular , Filogenia , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Salmo salar/virologia , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Virol J ; 11: 204, 2014 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-25472899

RESUMO

BACKGROUND: Infectious salmon anemia (ISA) is a serious disease of marine farmed Atlantic salmon, Salmo salar L. caused by ISA virus (ISAV). ISAV genomic segments 5 and 6 encode surface glycoproteins hemagglutinin-esterase (HE) and F protein important for the pathogenicity of ISAV. In this study, we describe the genetic characteristics and relationship between ISAV-HPR7a and ISAV-HPR7b strains that caused the ISA outbreaks in Chile in 2013 and 2014, respectively, and the evolution of the ISAV clades since 2009 based on segment 5 and 6 sequences. METHODS: The study material included samples from six ISA cases in Chile. RNA was extracted from salmon tissues and ISAV isolated from cell culture; segments 5 and 6 were amplified by RT-PCR and compared by alignment with ISAV sequences from the GenBank database. RESULTS: ISAV-HPR7a and ISAV-HPR7b belong to the European Genotype I strains only found in Europe and Chile, and in both cases, show high similarity in segments 5 and 6 with identity between 95-96%. Our data confirm the hypothesis that the original virus was introduced to Chile in 1996. Compared to the 2007 ISAV-HPR7b isolate, the 2014 ISAV-HPR7b does not have an insertion in segment 5 and was associated with low mortality, which suggests that ISAV virulence was attenuated by the absence of the insertion in segment 5. In contrast, the highly virulent ISAV-HPR14 from April 2013 outbreak did not have the insertion in segment 5 either. CONCLUSION: Variability in the ISAV virulence markers supports the quasispecies theory that multiple evolution forces are likely to shape ISAV genetic diversity. Our findings provide evidence of continuing evolution of ISAV in the Chilean aquaculture industry.


Assuntos
Surtos de Doenças , Doenças dos Peixes/virologia , Variação Genética , Isavirus/crescimento & desenvolvimento , Isavirus/genética , Infecções por Orthomyxoviridae/veterinária , Animais , Chile/epidemiologia , Análise por Conglomerados , Evolução Molecular , Isavirus/isolamento & purificação , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/virologia , Filogenia , RNA Viral/genética , Salmo salar , Análise de Sequência de DNA , Análise de Sobrevida , Virulência
8.
Pathogens ; 13(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39204226

RESUMO

Family Parvoviridae consists of small, non-enveloped viruses with linear, single-stranded DNA genomes of approximately 4-6 kilobases, subdivided into three subfamilies, Parvovirinae, Densovirinae, and Hamaparvovirinae, and unassigned genus Metalloincertoparvovirus. Parvoviruses of aquatic animals infect crustaceans, mollusks, and finfish. This review describes these parvoviruses, which are highly host-specific and associated with mass morbidity and mortality in both farmed and wild aquatic animals. They include Cherax quadricarinatus densovirus (CqDV) in freshwater crayfish in Queensland, Australia; sea star-associated densovirus (SSaDV) in sunflower sea star on the Northeastern Pacific Coast; Clinch densovirus 1 in freshwater mussels in the Clinch River, Virginia, and Tennessee, USA, in subfamily Densovirinae; hepatopancreatic parvovirus (HPV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) in farmed shrimp worldwide; Syngnathid ichthamaparvovirus 1 in gulf pipefish in the Gulf of Mexico and parts of South America; tilapia parvovirus (TiPV) in farmed tilapia in China, Thailand, and India, in the subfamily Hamaparvovirinae; and Penaeus monodon metallodensovirus (PmMDV) in Vietnamese P. monodon, in unassigned genus Metalloincertoparvovirus. Also included in the family Parvoviridae are novel parvoviruses detected in both diseased and healthy animals using metagenomic sequencing, such as zander parvovirus from zander in Hungary and salmon parvovirus from sockeye salmon smolts in British Columbia, Canada.

9.
Virol J ; 10: 230, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23844948

RESUMO

BACKGROUND: Piscine reovirus (PRV) is a newly discovered fish reovirus of anadromous and marine fish ubiquitous among fish in Norwegian salmon farms, and likely the causative agent of heart and skeletal muscle inflammation (HSMI). HSMI is an increasingly economically significant disease in Atlantic salmon (Salmo salar) farms. The nucleotide sequence data available for PRV are limited, and there is no genetic information on this virus outside of Norway and none from wild fish. METHODS: RT-PCR amplification and sequencing were used to obtain the complete viral genome of PRV (10 segments) from western Canada and Chile. The genetic diversity among the PRV strains and their relationship to Norwegian PRV isolates were determined by phylogenetic analyses and sequence identity comparisons. RESULTS: PRV is distantly related to members of the genera Orthoreovirus and Aquareovirus and an unambiguous new genus within the family Reoviridae. The Canadian and Norwegian PRV strains are most divergent in the segment S1 and S4 encoded proteins. Phylogenetic analysis of PRV S1 sequences, for which the largest number of complete sequences from different "isolates" is available, grouped Norwegian PRV strains into a single genotype, Genotype I, with sub-genotypes, Ia and Ib. The Canadian PRV strains matched sub-genotype Ia and Chilean PRV strains matched sub-genotype Ib. CONCLUSIONS: PRV should be considered as a member of a new genus within the family Reoviridae with two major Norwegian sub-genotypes. The Canadian PRV diverged from Norwegian sub-genotype Ia around 2007 ± 1, whereas the Chilean PRV diverged from Norwegian sub-genotype Ib around 2008 ± 1.


Assuntos
Variação Genética , Genoma Viral , RNA Viral/genética , Reoviridae/genética , Salmo salar/virologia , Análise de Sequência de DNA , Animais , Canadá , Chile , Análise por Conglomerados , Genótipo , Dados de Sequência Molecular , Noruega , Filogenia , Reoviridae/isolamento & purificação
10.
Virol J ; 10: 344, 2013 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-24268071

RESUMO

ABSTACT: Infectious salmon anaemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. ISA is caused by virulent ISAV strains with deletions in a highly polymorphic region (HPR) of the hemagglutinin-esterase (HE) protein (designated virulent ISAV-HPR∆). This study shows the historic dynamics of ISAV-HPR∆ and ISAV-HPR0 in Chile, the genetic relationship among ISAV-HPR0 reported worldwide and between ISAV-HPR0 and ISAV-HPR∆ in Chile, and reports the 2013 ISA outbreak in Chile. The first ISA outbreak in Chile occurred from mid-June 2007 to 2010 and involved the virulent ISAV-HPR7b, which was then replaced by a low pathogenic ISAV-HPR0 variant. We analyzed this variant in 66 laboratory-confirmed ISAV-HPR0 cases in Chile in comparison to virulent ISAV-HPR∆ that caused two new ISA outbreaks in April 2013. Multiple alignment and phylogenetic analysis of HE sequences from all ISAV-HPR0 viruses allowed us to identify three genomic clusters, which correlated with three residue patterns of ISAV-HPR0 (360PST362, 360PAN362 and 360PAT362) in HPR. The virus responsible for the 2013 ISAV-HPR∆ cases in Chile belonged to ISAV-HPR3 and ISAV-HPR14, and in phylogenetic analyses, both clustered with the ISAV-HPR0 found in Chile. The ISAV-HPR14 had the ISAV-HPR0 residue pattern 360PAT362, which is the only type of ISAV-HPR0 variant found in Chile. This suggested to us that the 2013 ISAV-HPR∆ re-emerged from ISAV-HPR0 that is enzootic in Chilean salmon aquaculture and were not new introductions of virulent ISAV-HPR∆ to Chile. The clinical presentations and diagnostic evidence of the 2013 ISA cases indicated a mixed infection of ISAV with the ectoparasite Caligus rogercresseyi and the bacterium Piscirickettsia salmonis, which underscores the need for active ISAV surveillance in areas where ISAV-HPR0 is enzootic, to ensure early detection and control of new ISA outbreaks, as it is considered a risk factor. This is the first report of ISA linked directly to the presence of ISAV-HPR0, and provides strong evidence supporting the contention that ISAV-HPR0 shows a strong relationship to virulent ISAV-HPR∆ viruses and the possibility that it could mutate to virulent ISAV-HPR∆.


Assuntos
Doenças dos Peixes/virologia , Isavirus/isolamento & purificação , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Animais , Aquicultura , Chile/epidemiologia , Análise por Conglomerados , Doenças dos Peixes/epidemiologia , Genótipo , Isavirus/classificação , Isavirus/genética , Epidemiologia Molecular , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA