RESUMO
Cilia are microtubule-based cell appendages, serving motility, chemo-/mechano-/photo- sensation, and developmental signaling functions. Cilia are comprised of distinct structural and functional subregions including the basal body, transition zone (TZ) and inversin (Inv) compartments, and defects in this organelle are associated with an expanding spectrum of inherited disorders including Bardet-Biedl syndrome (BBS), Meckel-Gruber Syndrome (MKS), Joubert Syndrome (JS) and Nephronophthisis (NPHP). Despite major advances in understanding ciliary trafficking pathways such as intraflagellar transport (IFT), how proteins are transported to subciliary membranes remains poorly understood. Using Caenorhabditis elegans and mammalian cells, we investigated the transport mechanisms underlying compartmentalization of JS-associated ARL13B/ARL-13, which we previously found is restricted at proximal ciliary membranes. We now show evolutionary conservation of ARL13B/ARL-13 localisation to an Inv-like subciliary membrane compartment, excluding the TZ, in many C. elegans ciliated neurons and in a subset of mammalian ciliary subtypes. Compartmentalisation of C. elegans ARL-13 requires a C-terminal RVVP motif and membrane anchoring to prevent distal cilium and nuclear targeting, respectively. Quantitative imaging in more than 20 mutants revealed differential contributions for IFT and ciliopathy modules in defining the ARL-13 compartment; IFT-A/B, IFT-dynein and BBS genes prevent ARL-13 accumulation at periciliary membranes, whereas MKS/NPHP modules additionally inhibit ARL-13 association with TZ membranes. Furthermore, in vivo FRAP analyses revealed distinct roles for IFT and MKS/NPHP genes in regulating a TZ barrier to ARL-13 diffusion, and intraciliary ARL-13 diffusion. Finally, C. elegans ARL-13 undergoes IFT-like motility and quantitative protein complex analysis of human ARL13B identified functional associations with IFT-B complexes, mapped to IFT46 and IFT74 interactions. Together, these findings reveal distinct requirements for sequence motifs, IFT and ciliopathy modules in defining an ARL-13 subciliary membrane compartment. We conclude that MKS/NPHP modules comprise a TZ barrier to ARL-13 diffusion, whereas IFT genes predominantly facilitate ARL-13 ciliary entry and/or retention via active transport mechanisms.
Assuntos
Fatores de Ribosilação do ADP/genética , Caenorhabditis elegans/genética , Doenças Cerebelares/genética , Cílios/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Retina/anormalidades , Fatores de Ribosilação do ADP/metabolismo , Anormalidades Múltiplas , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Transporte Biológico Ativo/genética , Caenorhabditis elegans/metabolismo , Doenças Cerebelares/patologia , Cerebelo/anormalidades , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Encefalocele/genética , Encefalocele/patologia , Anormalidades do Olho/patologia , Humanos , Doenças Renais Císticas/patologia , Membranas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Retina/patologia , Retinose Pigmentar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Epithelial to mesenchymal transition (EMT) is a fundamental cell differentiation/dedifferentiation process which is associated with dramatic morphological changes. Formerly polarized and immobile epithelial cells which form cell junctions and cobblestone-like cell sheets undergo a transition into highly motile, elongated, mesenchymal cells lacking cell-to-cell adhesions. To explore how the proteome is affected during EMT we profiled protein expression and tracked cell biological markers in Madin-Darby kidney epithelial cells undergoing hepatocyte growth factor (HGF) induced EMT. We were able to identify and quantify over 4000 proteins by mass spectrometry. Enrichment analysis of this revealed that expression of proteins associated with the ubiquitination machinery was induced, whereas expression of proteins regulating apoptotic pathways was suppressed. We show that both the mammalian Hippo/MST2 and the ISG15 pathways are regulated at the protein level by ubiquitin ligases. Inhibition of the Hippo pathway by overexpression of either ITCH or A-Raf promotes HGF-induced EMT. Conversely, ISG15 overexpression is sufficient to induce cell scattering and an elongated morphology without external stimuli. Thus, we demonstrate for the first time that the Hippo/MST2 and ISG15 pathways are regulated during growth-factor induced EMT.
Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento de Hepatócito/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ubiquitinas/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular , Cães , Fator de Crescimento de Hepatócito/farmacologia , Integrinas/metabolismo , Células Madin Darby de Rim Canino , Proteoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
In harsh conditions, Caenorhabditis elegans arrests development to enter a non-aging, resistant diapause state called the dauer larva. Olfactory sensation modulates the TGF-ß and insulin signaling pathways to control this developmental decision. Four mutant alleles of daf-25 (abnormal DAuer Formation) were isolated from screens for mutants exhibiting constitutive dauer formation and found to be defective in olfaction. The daf-25 dauer phenotype is suppressed by daf-10/IFT122 mutations (which disrupt ciliogenesis), but not by daf-6/PTCHD3 mutations (which prevent environmental exposure of sensory cilia), implying that DAF-25 functions in the cilia themselves. daf-25 encodes the C. elegans ortholog of mammalian Ankmy2, a MYND domain protein of unknown function. Disruption of DAF-25, which localizes to sensory cilia, produces no apparent cilia structure anomalies, as determined by light and electron microscopy. Hinting at its potential function, the dauer phenotype, epistatic order, and expression profile of daf-25 are similar to daf-11, which encodes a cilium-localized guanylyl cyclase. Indeed, we demonstrate that DAF-25 is required for proper DAF-11 ciliary localization. Furthermore, the functional interaction is evolutionarily conserved, as mouse Ankmy2 interacts with guanylyl cyclase GC1 from ciliary photoreceptors. The interaction may be specific because daf-25 mutants have normally-localized OSM-9/TRPV4, TAX-4/CNGA1, CHE-2/IFT80, CHE-11/IFT140, CHE-13/IFT57, BBS-8, OSM-5/IFT88, and XBX-1/D2LIC in the cilia. Intraflagellar transport (IFT) (required to build cilia) is not defective in daf-25 mutants, although the ciliary localization of DAF-25 itself is influenced in che-11 mutants, which are defective in retrograde IFT. In summary, we have discovered a novel ciliary protein that plays an important role in cGMP signaling by localizing a guanylyl cyclase to the sensory organelle.
Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Cílios/enzimologia , Guanilato Ciclase/metabolismo , Alelos , Animais , Caenorhabditis elegans/genética , Cílios/ultraestrutura , Epistasia Genética , Flagelos/metabolismo , Células HEK293 , Humanos , Mutação/genética , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de AminoácidosRESUMO
Clathrin adaptor (AP) complexes facilitate membrane trafficking between subcellular compartments. One such compartment is the cilium, whose dysfunction underlies disorders classified as ciliopathies. Although AP-1mu subunit (UNC-101) is linked to cilium formation and targeting of transmembrane proteins (ODR-10) to nematode sensory cilia at distal dendrite tips, these functions remain poorly understood. Here, using Caenorhabditis elegans sensory neurons and mammalian cell culture models, we find conservation of AP-1 function in facilitating cilium morphology, positioning and orientation, and microtubule stability and acetylation. These defects appear to be independent of IFT, because AP-1-depleted cells possess normal IFT protein localisation and motility. By contrast, disruption of chc-1 (clathrin) or rab-8 phenocopies unc-101 worms, preventing ODR-10 vesicle formation and causing misrouting of ODR-10 to all plasma membrane destinations. Finally, ODR-10 colocalises with RAB-8 in cell soma and they cotranslocate along dendrites, whereas ODR-10 and UNC-101 signals do not overlap. Together, these data implicate conserved roles for metazoan AP-1 in facilitating cilium structure and function, and suggest cooperation with RAB-8 to coordinate distinct early steps in neuronal ciliary membrane sorting and trafficking.
Assuntos
Complexo 1 de Proteínas Adaptadoras/fisiologia , Caenorhabditis elegans/fisiologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Clatrina/metabolismoRESUMO
Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon-associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan.
Assuntos
Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio , Cílios/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Transdução de SinaisRESUMO
Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches.
Assuntos
Citoesqueleto de Actina , Actinas , Linhagem Celular Tumoral , Movimento Celular , Citoesqueleto , Humanos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Proteína rhoA de Ligação ao GTPRESUMO
BACKGROUND: Multiple intracellular transport pathways drive the formation, maintenance, and function of cilia, a compartmentalized organelle associated with motility, chemo-/mechano-/photosensation, and developmental signaling. These pathways include cilium-based intraflagellar transport (IFT) and poorly understood membrane trafficking events. Defects in ciliary transport contribute to the etiology of human ciliary disease such as Bardet-Biedl syndrome (BBS). In this study, we employ the genetically tractable nematode Caenorhabditis elegans to investigate whether endocytosis genes function in cilium formation and/or the transport of ciliary membrane or ciliary proteins. RESULTS: Here we show that localization of the clathrin light chain, AP-2 clathrin adaptor, dynamin, and RAB-5 endocytic proteins overlaps with a morphologically discrete periciliary membrane compartment associated with sensory cilia. In addition, ciliary transmembrane proteins such as G protein-coupled receptors concentrate at periciliary membranes. Disruption of endocytic gene function causes expansion of ciliary and/or periciliary membranes as well as defects in the ciliary targeting and/or transport dynamics of ciliary transmembrane and IFT proteins. Finally, genetic analyses reveal that the ciliary membrane expansions in dynamin and AP-2 mutants require bbs-8 and rab-8 function and that sensory signaling and endocytic genes may function in a common pathway to regulate ciliary membrane volume. CONCLUSIONS: These data implicate C. elegans endocytosis proteins localized at the ciliary base in regulating ciliary and periciliary membrane volume and suggest that membrane retrieval from these compartments is counterbalanced by BBS-8 and RAB-8-mediated membrane delivery.
Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Cílios/genética , Cílios/fisiologia , Endocitose/genética , Genes de Helmintos , Animais , Animais Geneticamente Modificados , Transporte Biológico Ativo/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Endocitose/fisiologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Mutação , Transporte Proteico/genética , Transdução de Sinais , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/fisiologiaRESUMO
We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer α-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-x(L), respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell.
Assuntos
Proteínas de Transporte de Ânions/metabolismo , Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Proliferação de Células , Células Germinativas/citologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Secreção de Insulina , Larva/citologia , Larva/metabolismo , Camundongos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais , Mutação/genética , Fenótipo , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Proteína bcl-X/metabolismoRESUMO
Numerous unimolecular, genetically-encoded Förster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R(alt)) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R(alt) are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purposes.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Proteínas Luminescentes/metabolismo , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de FluorescênciaRESUMO
Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and related ciliopathies present with overlapping phenotypes and display considerable allelism between at least twelve different genes of largely unexplained function. We demonstrate that the conserved C. elegans B9 domain (MKS-1, MKSR-1, and MKSR-2), MKS-3/TMEM67, MKS-5/RPGRIP1L, MKS-6/CC2D2A, NPHP-1, and NPHP-4 proteins exhibit essential, collective functions at the transition zone (TZ), an underappreciated region at the base of all cilia characterized by Y-shaped assemblages that link axoneme microtubules to surrounding membrane. These TZ proteins functionally interact as members of two distinct modules, which together contribute to an early ciliogenic event. Specifically, MKS/MKSR/NPHP proteins establish basal body/TZ membrane attachments before or coinciding with intraflagellar transport-dependent axoneme extension and subsequently restrict accumulation of nonciliary components within the ciliary compartment. Together, our findings uncover a unified role for eight TZ-localized proteins in basal body anchoring and establishing a ciliary gate during ciliogenesis, and suggest that disrupting ciliary gate function contributes to phenotypic features of the MKS/NPHP disease spectrum.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Cílios/fisiologia , Cílios/ultraestrutura , Proteínas de Membrana/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Transtornos da Motilidade Ciliar/fisiopatologia , Encefalocele/genética , Encefalocele/patologia , Encefalocele/fisiopatologia , Humanos , Doenças Renais Císticas/congênito , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Doenças Renais Císticas/fisiopatologia , Proteínas de Membrana/genética , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/fisiopatologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retinose PigmentarRESUMO
The small ciliary G protein Arl13b is required for cilium biogenesis and sonic hedgehog signaling and is mutated in patients with Joubert syndrome (JS). In this study, using Caenorhabditis elegans and mammalian cell culture systems, we investigated the poorly understood ciliary and molecular basis of Arl13b function. First, we show that Arl13b/ARL-13 localization is frequently restricted to a proximal ciliary compartment, where it associates with ciliary membranes via palmitoylation modification motifs. Next, we find that loss-of-function C. elegans arl-13 mutants possess defects in cilium morphology and ultrastructure, as well as defects in ciliary protein localization and transport; ciliary transmembrane proteins abnormally accumulate, PKD-2 ciliary abundance is elevated, and anterograde intraflagellar transport (IFT) is destabilized. Finally, we show that arl-13 interacts genetically with other ciliogenic and ciliary transport-associated genes in maintaining cilium structure/morphology and anterograde IFT stability. Together, these data implicate a role for JS-associated Arl13b at ciliary membranes, where it regulates ciliary transmembrane protein localizations and anterograde IFT assembly stability.