Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Neurol ; 86(4): 593-606, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343083

RESUMO

OBJECTIVE: Excessive inflammation in the central nervous system (CNS) and the periphery can result in neurodegeneration and parkinsonism. Recent evidence suggests that immune responses in Parkinson disease patients are dysregulated, leading to an increased inflammatory reaction to unspecific triggers. Although α-synuclein pathology is the hallmark of Parkinson disease, it has not been investigated whether pathologic α-synuclein is a specific trigger for excessive inflammatory responses in Parkinson disease. METHODS: We investigated the immune response of primary human monocytes and a microglial cell line to pathologic forms of α-synuclein by assessing cytokine release upon exposure. RESULTS: We show that pathologic α-synuclein (mutations, aggregation) results in a robust inflammatory activation of human monocytes and microglial BV2 cells. The activation is conformation- dependent, with increasing fibrillation and early onset mutations having the strongest effect on immune activation. We also found that activation of immune cells by extracellular α-synuclein is potentiated by extracellular vesicles, possibly by facilitating the uptake of α-synuclein. Blood extracellular vesicles from Parkinson disease patients induce a stronger activation of monocytes than blood extracellular vesicles from healthy controls. Most importantly, monocytes from Parkinson disease patients are dysregulated and hyperactive in response to stimulation with pathologic α-synuclein. Furthermore, we demonstrate that α-synuclein pathology in the CNS is sufficient to induce the monocyte dysregulation in the periphery of a mouse model. INTERPRETATION: Taken together, our data suggest that α-synuclein pathology and dysregulation of monocytes in Parkinson disease can act together to induce excessive inflammatory responses to α-synuclein. ANN NEUROL 2019;86:593-606.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Doença de Parkinson/imunologia , alfa-Sinucleína/efeitos adversos , Animais , Células Cultivadas , Vesículas Extracelulares/imunologia , Humanos , Inflamação/complicações , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Mutação , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética
2.
BMC Musculoskelet Disord ; 18(1): 443, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132347

RESUMO

BACKGROUND: After septic failure of total knee arthroplasty (TKA) and multiple revision operations resulting in impaired function, bone and/or soft-tissue damage a reconstruction with a revision arthroplasty might be impossible. Salvage procedures to regain mobility and quality of life are an above-the-knee amputation or knee arthrodesis. The decision process for the patient and surgeon is difficult and data comparing arthrodesis versus amputation in terms of function and quality of life are scarce. The purpose of this study was to analyse and compare the specific complications, functional outcome and quality of life of above-the-knee amputation (AKA) and modular knee-arthrodesis (MKA) after septic failure of total knee arthroplasty. METHODS: Eighty-one patients treated with MKA and 32 patients treated with AKA after septic failure of TKA between 2003 and 2012 were included in this cohort study. Demographic data, comorbidities, pathogens and complications such as re-infection, implant-failure or revision surgeries were recorded in 55MKA and 20AKA patients. Functional outcome with use of the Lower-Extremity-Functional-Score (LEFS) and the patients reported general health status (SF-12-questionnaire) was recorded after a mean interval of 55 months. RESULTS: A major complication occurred in more than one-third of the cases after MKA and AKA, whereas recurrence of infection was with 22% after MKA and 35% after AKA the most common complication. Patients with AKA and MKA showed a comparable functional outcome with a mean LEFS score of 37 and 28 respectively (p = 0.181). Correspondingly, a comparable physical quality of life with a mean physical SF-12 of 36 for AKA patients and a mean score of 30 for MKA patients was observed (p = 0.080). Notably, ten AKA patients that could be fitted with a microprocessor-controlled-knee-joint demonstrated with a mean LEFS of 56 a significantly better functional outcome than other amputee patients (p < 0.01) or MKA patients (p < 0.01). CONCLUSION: Naturally, the decision process for the treatment of desolate situations of septic failures following revision knee arthroplasty is depending on various factors. Nevertheless, the amputation should be considered as an option in patients with a good physical and mental condition.


Assuntos
Amputação Cirúrgica/mortalidade , Artrodese/mortalidade , Artroplastia do Joelho/efeitos adversos , Articulação do Joelho/cirurgia , Falha de Prótese , Adulto , Idoso , Idoso de 80 Anos ou mais , Amputação Cirúrgica/efeitos adversos , Artrodese/efeitos adversos , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Reoperação , Estudos Retrospectivos , Terapia de Salvação , Sepse/etiologia , Sepse/cirurgia , Resultado do Tratamento
3.
Acta Neuropathol ; 131(3): 379-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26576561

RESUMO

Extracellular alpha-synuclein (αsyn) oligomers, associated to exosomes or free, play an important role in the pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that these extracellular moieties activate microglia leading to enhanced neuronal damage. Despite extensive efforts on studying neuroinflammation in PD, little is known about the impact of age on microglial activation and phagocytosis, especially of extracellular αsyn oligomers. Here, we show that microglia isolated from adult mice, in contrast to microglia from young mice, display phagocytosis deficits of free and exosome-associated αsyn oligomers combined with enhanced TNFα secretion. In addition, we describe a dysregulation of monocyte subpopulations with age in mice and humans. Accordingly, human monocytes from elderly donors also show reduced phagocytic activity of extracellular αsyn. These findings suggest that these age-related alterations may contribute to an increased susceptibility to pathogens or abnormally folded proteins with age in neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Exossomos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Camundongos , Doença de Parkinson/metabolismo , Fagocitose/fisiologia
4.
Front Cell Dev Biol ; 8: 562241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042996

RESUMO

The aggregation of α-synuclein (α-syn) is inseparably connected to Parkinson's disease (PD). It is now well-established that certain forms of α-syn aggregates, oligomers and fibrils, can exert neurotoxicity in synucleinopathies. With the exception of rare familial forms, the vast majority of PD cases are idiopathic. Understanding the earliest molecular mechanisms that cause initial α-syn misfolding could help to explain why PD affects only some individuals and others not. Factors that chaperone the transition of α-syn's physiological to pathological function are of particular interest, since they offer opportunities for intervention. The relationship between α-syn and lipids represents one of those factors. Membrane interaction is crucial for normal cellular function, but lipids also induce the aggregation of α-syn, causing cell toxicity. Also, disease-causing or risk-factor mutations in genes related to lipid metabolism like PLA2G6, SCARB2 or GBA1 highlight the close connection between PD and lipids. Despite the clear link, the ambivalent interaction has not been studied sufficiently so far. In this review, we address how α-syn interacts with lipids and how they can act as key factor for orchestrating toxic conversion of α-syn. Furthermore, we will discuss a scenario in which initial α-syn aggregation is determined by shifts in lipid/α-syn ratio as well as by dyshomeostasis of membrane bound/unbound state of α-syn.

5.
Arch Bone Jt Surg ; 7(2): 112-117, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31211189

RESUMO

BACKGROUND: Aim of this study was to compare the clinical and radiological long-term outcomes following operative treatment of comminuted radial head fractures using 1) primary radial head resection arthroplasty, 2) acute radial head resection, or 3) necessary secondary prosthetic removal. Additionally, we evaluated complex radial head fractures combined with elbow dislocation and verified the hypothesis of whether primary radial head resection arthroplasty could contribute to ligament healing. METHODS: In a comparative retrospective cohort study between 2004 and 2014, 87 (33 female, 54 male) patients with comminuted radial head fractures with a median age of 45 (range 18-77) years were included and followed-up clinically and radiologically. Functional results were evaluated according to MEPS, DASH, Broberg and Morrey, and VAS scores. RESULTS: After a median range of 46 months postoperatively, 48 patients (group 1) obtained an acute radial head resection arthroplasty (MEPS: 70 points, Broberg and Morrey: 63 points, DASH: 34 points, VAS: 3.3 points). Twenty patients (group 2) were treated by radial head resection (MEPS: 63 points, Broberg and Morrey: 50 points, DASH: 49 points, VAS 4.2 points) and 19 patients (group 3) needed secondary prosthesis removal (MEPS: 73 points, Broberg and Morrey: 66 points, DASH: 38 points, VAS: 2.8 points). The overall outcome demonstrated a trend towards better results and the Kellgren-Lawrence grade of postoperative osteoarthritis was significantly better in groups 1 and 3 compared to group 2 (P=0.02). CONCLUSION: Clinical and radiological long-term results of this study demonstrate a trend towards a better outcome after acute radial head resection arthroplasty compared to primary radial head resection, especially in complex fractures associated with elbow dislocation. Furthermore, our results encourage the use of primary radial head replacement in cases of comminuted non-reconstructable radial head fractures.

6.
Cell Rep ; 29(9): 2862-2874.e9, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775051

RESUMO

Intracellular accumulation of α-synuclein (α-syn) and formation of Lewy bodies are neuropathological characteristics of Parkinson's disease (PD) and related α-synucleinopathies. Oligomerization and spreading of α-syn from neuron to neuron have been suggested as key events contributing to the progression of PD. To directly visualize and characterize α-syn oligomerization and spreading in vivo, we generated two independent conditional transgenic mouse models based on α-syn protein complementation assays using neuron-specifically expressed split Gaussia luciferase or split Venus yellow fluorescent protein (YFP). These transgenic mice allow direct assessment of the quantity and subcellular distribution of α-syn oligomers in vivo. Using these mouse models, we demonstrate an age-dependent accumulation of a specific subtype of α-syn oligomers. We provide in vivo evidence that, although α-syn is found throughout neurons, α-syn oligomerization takes place at the presynapse. Furthermore, our mouse models provide strong evidence for a transsynaptic cell-to-cell transfer of de novo generated α-syn oligomers in vivo.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
7.
Artigo em Inglês | MEDLINE | ID: mdl-29994498

RESUMO

Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

8.
Aging (Albany NY) ; 9(7): 1677-1697, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28722658

RESUMO

Several age-related neurodegenerative disorders are associated with protein misfolding and aggregation of toxic peptides. α-synuclein (α-syn) aggregation and the resulting cytotoxicity is a hallmark of Parkinson's disease (PD) as well as dementia with Lewy bodies. Rising evidence points to oligomeric and pre-fibrillar forms as the pathogenic species, and oligomer secretion seems to be crucial for the spreading and progression of PD pathology. Recent studies implicate that dysfunctions in endolysosomal/autophagosomal pathways increase α-syn secretion. Mutation in the retromer-complex protein VPS35, which is involved in endosome to Golgi transport, was suggested to cause familial PD. GGA proteins regulate vesicular traffic between Golgi and endosomes and might work as antagonists for retromer complex mediated transport. To investigate the role of the GGAs in the α-syn oligomerization and/or secretion process we utilized protein-fragment complementation assays (PCA). We here demonstrate that GGAs alter α-syn oligomer secretion and α-syn oligomer-mediated toxicity. Specifically, we determined that GGA3 modifies extracellular α-syn species in an exosome-independent manner. Our data suggest that GGA3 drives α-syn oligomerization in endosomal compartments and thus facilitates α-syn oligomer secretion. Preventing the early events in α-syn oligomer release may be a novel approach to halt disease spreading in PD and other synucleinopathies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexo de Golgi/metabolismo , alfa-Sinucleína/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linhagem Celular , Cerebelo , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Família Multigênica , Doença de Parkinson/metabolismo , Substância Negra/citologia , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA