Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Microbiol ; 20(1): 252, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795262

RESUMO

BACKGROUND: Groundnut pre- and post-harvest contamination is commonly caused by fungi from the Genus Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi. Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agro-ecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap. RESULTS: The overall pre- and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively. Pre- and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and 35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ2 = 2, p = 0.157) in overall pre- and post-harvest groundnut contamination rates with A. flavus and similarly no significant difference (χ2 = 6, p = 0.199) was observed in the pre- and post-harvest contamination of groundnut with A. flavus across the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had insignificantly higher incidence of aflatoxin production (χ2 = 2.667, p = 0.264) than those from the post-harvest groundnut samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241, p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming system (r = 0.0141, p = 0.412) and WN farming system (r = 0.02, p = 0.478). Hierarchical clustering using the unweighted pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates. CONCLUSIONS: These findings provide evidence that genetic differentiation in A. flavus populations is independent of geographic distance. This information can be valuable in the development of a suitable biocontrol management strategy of aflatoxin-producing A. flavus.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/classificação , Variação Genética , Nozes/microbiologia , Aflatoxinas/genética , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Análise por Conglomerados , Produtos Agrícolas/microbiologia , Contaminação de Alimentos , Filogenia , Metabolismo Secundário , Uganda
2.
Plant Biotechnol J ; 17(6): 1119-1129, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30467980

RESUMO

Considered responsible for one million deaths in Ireland and widespread famine in the European continent during the 1840s, late blight, caused by Phytophthora infestans, remains the most devastating disease of potato (Solanum tuberosum L.) with about 15%-30% annual yield loss in sub-Saharan Africa, affecting mainly smallholder farmers. We show here that the transfer of three resistance (R) genes from wild relatives [RB, Rpi-blb2 from Solanum bulbocastanum and Rpi-vnt1.1 from S. venturii] into potato provided complete resistance in the field over several seasons. We observed that the stacking of the three R genes produced a high frequency of transgenic events with resistance to late blight. In the field, 13 resistant transgenic events with the 3R-gene stack from the potato varieties 'Desiree' and 'Victoria' grew normally without showing pathogen damage and without any fungicide spray, whereas their non-transgenic equivalent varieties were rapidly killed. Characteristics of the local pathogen population suggest that the resistance to late blight may be long-lasting because it has low diversity, and essentially consists of the single lineage, 2_A1, which expresses the cognate avirulence effector genes. Yields of two transgenic events from 'Desiree' and 'Victoria' grown without fungicide to reflect small-scale farm holders were estimated to be 29 and 45 t/ha respectively. This represents a three to four-fold increase over the national average. Thus, these late blight resistant potato varieties, which are the farmers' preferred varieties, could be rapidly adopted and bring significant income to smallholder farmers in sub-Saharan Africa.


Assuntos
Resistência à Doença , Phytophthora infestans , Plantas Geneticamente Modificadas , Solanum tuberosum , Clonagem Molecular , Resistência à Doença/genética , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia
3.
Plant Dis ; 101(8): 1455-1462, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30678589

RESUMO

Maize lethal necrosis (MLN), a severe virus disease of maize, has emerged in East Africa in recent years with devastating effects on production and food security where maize is a staple subsistence crop. In extensive surveys of MLN-symptomatic plants in East Africa, sequences of Johnsongrass mosaic virus (JGMV) were identified in Uganda, Kenya, Rwanda, and Tanzania. The East African JGMV is distinct from previously reported isolates and infects maize, sorghum, and Johnsongrass but not wheat or oat. This isolate causes MLN in coinfection with Maize chlorotic mottle virus (MCMV), as reported for other potyviruses, and was present in MLN-symptomatic plants in which the major East African potyvirus, Sugarcane mosaic virus (SCMV), was not detected. Virus titers were compared in single and coinfections by quantitative reverse transcription-polymerase chain reaction. MCMV titer increased in coinfected plants whereas SCMV, Maize dwarf mosaic virus, and JGMV titers were unchanged compared with single infections at 11 days postinoculation. Together, these results demonstrate the presence of an East African JGMV that contributes to MLN in the region.


Assuntos
Potyvirus , Zea mays , África Oriental , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase , Potyvirus/genética , Potyvirus/fisiologia , Zea mays/virologia
4.
Phytopathology ; 105(7): 956-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25822185

RESUMO

In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.


Assuntos
Potyviridae/fisiologia , Tombusviridae/fisiologia , Zea mays/virologia , África Subsaariana , Abastecimento de Alimentos , Interações Hospedeiro-Patógeno , Controle de Pragas , Doenças das Plantas/virologia
5.
J Exp Bot ; 61(15): 4169-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20581122

RESUMO

Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.


Assuntos
Comportamento Alimentar/efeitos dos fármacos , Insetos/efeitos dos fármacos , Insetos/fisiologia , Controle Biológico de Vetores , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Plantas Geneticamente Modificadas
6.
Arch Insect Biochem Physiol ; 73(2): 87-105, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20035549

RESUMO

The general potential of plant cystatins for the development of insect-resistant transgenic plants still remains to be established given the natural ability of several insects to compensate for the loss of digestive cysteine protease activities. Here we assessed the potential of cystatins for the development of banana lines resistant to the banana weevil Cosmopolites sordidus, a major pest of banana and plantain in Africa. Protease inhibitory assays were conducted with protein and methylcoumarin (MCA) peptide substrates to measure the inhibitory efficiency of different cystatins in vitro, followed by a diet assay with cystatin-infiltrated banana stem disks to monitor the impact of two plant cystatins, oryzacystatin I (OC-I, or OsCYS1) and papaya cystatin (CpCYS1), on the overall growth rate of weevil larvae. As observed earlier for other Coleoptera, banana weevils produce a variety of proteases for dietary protein digestion, including in particular Z-Phe-Arg-MCA-hydrolyzing (cathepsin L-like) and Z-Arg-Arg-MCA-hydrolyzing (cathepsin B-like) proteases active in mildly acidic conditions. Both enzyme populations were sensitive to the cysteine protease inhibitor E-64 and to different plant cystatins including OsCYS1. In line with the broad inhibitory effects of cystatins, OsCYS1 and CpCYS1 caused an important growth delay in young larvae developing for 10 days in cystatin-infiltrated banana stem disks. These promising results, which illustrate the susceptibility of C. sordidus to plant cystatins, are discussed in the light of recent hypotheses suggesting a key role for cathepsin B-like enzymes as a determinant for resistance or susceptibility to plant cystatins in Coleoptera.


Assuntos
Catepsina B/metabolismo , Catepsina L/metabolismo , Cistatinas/metabolismo , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Musa/metabolismo , Proteínas de Plantas/metabolismo , Gorgulhos/metabolismo , Animais , Catepsina B/genética , Catepsina L/genética , Inibidores de Cisteína Proteinase/metabolismo , Larva/metabolismo , Gorgulhos/embriologia
7.
BMC Res Notes ; 12(1): 425, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311592

RESUMO

OBJECTIVE: Passion fruit improvement efforts by conventional breeding have had limited success calling for research into alternative approaches such as tissue culture and genetic engineering. An efficient and reproducible regeneration system is a prerequisite for successful genetic engineering. Currently, there is no reliable regeneration system for Uganda's passion fruit varieties owing to the high heterogeneity of the Passiflora genus. Therefore, this study aimed at establishing an efficient and reproducible regeneration system for Uganda's Passiflora edulis f. flavicarpa (yellow passion fruit) and Passiflora edulis f. edulis (purple passion fruit) for routine utilization with an ultimate goal of improving its agronomic value. RESULTS: The study successfully induced shoots by both direct and indirect organogenesis for the yellow passion fruit variety. Highest shoot induction frequency (14.85%) was achieved on 8.9 µM BAP while 7.9 µM BAP did not initiate any shoots. Optimal shoot elongation and rooting was achieved on 0.44 µM BAP and 5.37 µM α-naphthaleneacetic (NAA) respectively. Rooted yellow passion fruit plantlets were successfully weaned with over 65% survival rates. It took approximately 6 months to produce a weaned healthy passion fruit plant. The purple passion fruit variety proved to be recalcitrant to tissue culture with no successful shoot or callus induction.


Assuntos
Engenharia Genética/métodos , Passiflora/fisiologia , Folhas de Planta/fisiologia , Regeneração/fisiologia , Técnicas de Cultura de Tecidos/métodos , Ácidos Naftalenoacéticos/farmacologia , Organogênese/efeitos dos fármacos , Organogênese/genética , Passiflora/classificação , Passiflora/genética , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Regeneração/genética , Especificidade da Espécie , Uganda
8.
Plant Physiol Biochem ; 46(11): 1007-14, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18657982

RESUMO

The non-expressor of pathogenesis-related genes 1 (NPR1) is an essential positive regulator of salicylic acid (SA)-induced pathogenesis-related (PR) gene expression and systemic acquired resistance (SAR). Two novel full length NPR1-like genes; MNPR1A and MNPR1B, were isolated from banana by application of the PCR and rapid amplification of cDNA ends (RACE) techniques. The two identified MNPR1 sequences differed greatly in their expression profile using quantitative real time (qRT)-PCR following either elicitor or Fusarium oxysporum Schlecht f. sp. cubense (Smith) Snyd (Foc) treatment. MNPR1A was greatly expressed after Foc treatment with higher and earlier expression in the Foc-tolerant cultivar GCTCV-218 than in the sensitive cultivar Grand Naine. In comparison, MNPR1B was highly responsive to SA, but not to methyl jasmonate (MeJA) treatment, in both the tolerant banana cultivar GCTCV-218 and the more sensitive cultivar Grand Naine. Expression of the MNPR1 genes further directly related to PR gene expression known to be involved in fungal resistance. Reduced sensitivity to Foc in GCTCV-218 might be partially attributed to the higher and an earlier expression of both MNPR1A and PR-1 in this cultivar after Foc treatment. Further characterisation of the MNPR1 genes through complementation of Arabidopsis npr1 mutants and overexpression studies in banana cultivars is the subject of ongoing and future work.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Musa/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Acetatos/farmacologia , Sequência de Aminoácidos , Ciclopentanos/farmacologia , Fusarium , Expressão Gênica , Dados de Sequência Molecular , Oxilipinas/farmacologia , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Pest Manag Sci ; 69(10): 1155-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23471899

RESUMO

BACKGROUND: A key challenge for designing RNAi-based crop protection strategies is the identification of effective target genes in the pathogenic organism. In this study, in vitro antifungal activities of a set of synthetic double-stranded RNA molecules on spore germination of two major pathogenic fungi of banana, Fusarium oxysporum Schlecht f. sp. cubense WC Snyder & HN Hans (Foc) and Mycosphaerella fijiensis Morelet (Mf) were evaluated. RESULTS: All the tested synthetic dsRNAs successfully triggered the silencing of target genes and displayed varying degrees of potential to inhibit spore germination of both tested banana pathogens. When Foc dsRNAs were applied to Foc spores, inhibition ranged from 79.8 to 93.0%, and from 19.9 to 57.8% when Foc dsRNAs were applied to Mf spores. However, when Mf dsRNAs were applied on Mf spores, inhibition ranged from 34.4 to 72.3%, and from 89.7 to 95.9% when Mf dsRNAs were applied to Foc spores. CONCLUSION: The dsRNAs for adenylate cyclase, DNA polymerase alpha subunit and DNA polymerase delta subunit showed high levels of spore germination inhibition during both self- and cross-species tests, making them the most promising targets for RNA-mediated resistance in banana against these fungal pathogens. © 2013 Society of Chemical Industry.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/genética , Fusarium/genética , Musa/microbiologia , Doenças das Plantas/microbiologia , Interferência de RNA , RNA de Cadeia Dupla/genética , Ascomicetos/efeitos dos fármacos , Proteínas Fúngicas/genética , Fusarium/efeitos dos fármacos , Controle Biológico de Vetores , RNA de Cadeia Dupla/farmacologia
10.
GM Crops Food ; 4(1): 19-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23090016

RESUMO

In tackling agricultural challenges, policy-makers in sub-Saharan Africa (SSA) have increasingly considered genetically modified (GM) crops as a potential tool to increase productivity and to improve product quality. Yet, as elsewhere in the world, the adoption of GM crops in SSA has been marked by controversy, encompassing not only the potential risks to animal and human health, and to the environment, but also other concerns such as ethical issues, public participation in decision-making, socio-economic factors and intellectual property rights. With these non-scientific factors complicating an already controversial situation, disseminating credible information to the public as well as facilitating stakeholder input into decision-making is essential. In SSA, there are various and innovative risk communication approaches and strategies being developed, yet a comprehensive analysis of such data is missing. This gap is addressed by giving an overview of current strategies, identifying similarities and differences between various country and institutional approaches and promoting a way forward, building on a recent workshop with risk communicators working in SSA.


Assuntos
Comunicação , Produtos Agrícolas/genética , Educação , África Subsaariana , Humanos , Plantas Geneticamente Modificadas , Fatores de Risco
12.
New Phytol ; 173(4): 841-851, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17286832

RESUMO

We assessed the ability of the fungal elicitor arachidonic acid to induce cystatin genes in tomato (Solanum lycopersicum), using a cDNA expression library from arachidonate-treated leaves. The cDNAs of two novel cystatins were isolated, coding for an approx. 11-kDa protein, SlCYS10; and for a 23.6-kDa protein, SlCYS9, bearing an N-terminal signal peptide and a long, 11.5-kDa extension at the C terminus. Both genes were induced by arachidonate but not by methyl jasmonate, an inducer of the 88-kDa eight-unit cystatin, multicystatin, accumulated in the cytosol of leaf cells upon herbivory. A truncated form of SlCYS9, tSlCYS9, was produced by deletion of the C-terminal extension to assess the influence of this structural element on the cystatin moiety. As shown by kinetic and stability assays with recombinant variants expressed in Escherichia coli, deleting the extension influenced both the overall stability and inhibitory potency of SlCYS9 against cysteine proteases of herbivorous organisms. These findings provide evidence for a multicomponent elicitor-inducible cystatin complex in tomato, including at least 10 cystatin units produced via two metabolic routes.


Assuntos
Acetatos/farmacologia , Ácidos Araquidônicos/farmacologia , Ciclopentanos/farmacologia , Cistatinas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Sequência de Aminoácidos , Sequência de Bases , Cistatinas/química , Cistatinas/farmacologia , Inibidores de Cisteína Proteinase/genética , Inibidores de Cisteína Proteinase/farmacologia , DNA Complementar , DNA de Plantas , Deleção de Genes , Biblioteca Gênica , Genoma de Planta , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Oxilipinas , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
13.
Plant J ; 48(3): 403-13, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16965553

RESUMO

Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the larfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties.


Assuntos
Aminoácidos/química , Cistatinas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Mutação , Sequência de Bases , Códon , Cistatinas/química , Primers do DNA , Funções Verossimilhança , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA