Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202402082, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897925

RESUMO

The construction of a chemical library based on natural products is a promising method for the synthesis of natural product-like compounds. In this study, we synthesized a terpenoid alkaloid-like compound library based on the humulene skeleton. Our strategy, which enables access to diverse ring systems such as 11-membered monocyclic, oxabicyclic, and medium-sized aza ring-containing scaffolds, involves the introduction of a nitrogen atom, an intermolecular C-O bond formation via Lewis acid-mediated epoxide-opening transannulation, and a ring-reconstruction strategy based on olefin metathesis. A cheminformatics analysis based on their structural and physicochemical properties revealed that the synthesized compounds have high three-dimensionality and high natural product likeness scores but with structural novelty. The usefulness of the terpenoid alkaloid-like compound library for drug discovery and the accessibility to structure-activity relationship studies were validated by performing an assay for osteoclast-specific tartrate-resistant acid phosphatase activity, resulting in the identification of a lead compound for bone-resorptive diseases such as osteoporosis.

2.
J Pharmacol Sci ; 154(3): 157-165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395516

RESUMO

For the treatment and prevention of autoinflammatory diseases, it is essential to develop the drug, regulating the innate immune system. Although differentiation-inducing factor (DIF) derivatives, extracted from the cellular slime mold, Dictyostelium discoideum, exhibit immunomodulatory effects, their effects on the regulation of innate immunity in brain are unknown. In this study, we used the human cerebral microvascular endothelial cell line, hCMEC/D3, to investigate the effects of DIF derivatives on the generation of C-X-C motif chemokine (CXCL) 10 and interferon (IFN)-ß induced by polyinosinic-polycytidylic acid (poly IC). DIF-3 (1-10 µM), but not DIF-1 and DIF-2, dose-dependently inhibited the biosynthesis of not only CXCL10 but also CXCL16 and C-C motif chemokine 2 induced by poly IC. DIF-3 also strongly decreased IFN-ß mRNA expression and protein release from the cells induced by poly IC through the prohibition of p65, a subtype of NF-ĸB, not interferon regulatory transcription factor 3 phosphorylation. In the docking simulation study, we confirmed that DIF-3 had a high affinity to p65. These results suggest that DIF-3 regulates the innate immune system by inhibiting TLR3/IFN-ß signaling axis through the NF-ĸB phosphorylation inhibition.


Assuntos
Dictyostelium , Poli I-C , Humanos , Poli I-C/farmacologia , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Imunidade Inata , Quimiocinas/metabolismo , Quimiocinas/farmacologia
3.
J Nat Prod ; 87(4): 1067-1074, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38631020

RESUMO

A search for anti-trypanosomal natural compounds from plants collected in El Salvador, a country particularly endemic for Chagas disease, resulted in the isolation of five lignan-type compounds (1-5) from Peperomia pseudopereskiifolia. The lignan derivatives 1, 2, and 4 are new. Their absolute configuration was determined by chemical derivatization. Compounds 1, 5, 6, and 8 exhibited anti-trypanosomal activity against the amastigote form of T. cruzi comparable to that of the existing drug benznidazole.


Assuntos
Lignanas , Peperomia , Tripanossomicidas , Trypanosoma cruzi , Lignanas/farmacologia , Lignanas/química , Lignanas/isolamento & purificação , Trypanosoma cruzi/efeitos dos fármacos , El Salvador , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Estrutura Molecular , Peperomia/química , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Doença de Chagas/tratamento farmacológico
4.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339168

RESUMO

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 µM dose-dependently suppressed growth, whereas LW6 at 20 µM, but not at 2-10 µM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 µM significantly promoted glucose uptake, with the strongest effect at 20 µM DIF-1, whereas LW6 at 2-20 µM significantly promoted glucose uptake, with the strongest effect at 10 µM LW6. Western blot analyses showed that LW6 (10 µM) and DIF-1 (20 µM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.


Assuntos
Glucose , Malato Desidrogenase , Animais , Humanos , Camundongos , Células 3T3-L1/efeitos dos fármacos , Células 3T3-L1/metabolismo , Adenilato Quinase/metabolismo , Dictyostelium/metabolismo , Glucose/metabolismo , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Malato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/metabolismo , Mamíferos/metabolismo
5.
Molecules ; 29(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731634

RESUMO

Cellular slime molds are excellent model organisms in the field of cell and developmental biology because of their simple developmental patterns. During our studies on the identification of bioactive molecules from secondary metabolites of cellular slime molds toward the development of novel pharmaceuticals, we revealed the structural diversity of secondary metabolites. Cellular slime molds grow by feeding on bacteria, such as Klebsiella aerogenes and Escherichia coli, without using medium components. Although changing the feeding bacteria is expected to affect dramatically the secondary metabolite production, the effect of the feeding bacteria on the production of secondary metabolites is not known. Herein, we report the isolation and structure elucidation of clavapyrone (1) from Dictyostelium clavatum, intermedipyrone (2) from D. magnum, and magnumiol (3) from D. intermedium. These compounds are not obtained from usual cultural conditions with Klebsiella aerogenes but obtained from coincubated conditions with Pseudomonas spp. The results demonstrate the diversity of the secondary metabolites of cellular slime molds and suggest that widening the range of feeding bacteria for cellular slime molds would increase their application potential in drug discovery.


Assuntos
Dictyostelium , Pseudomonas , Pironas , Pironas/química , Pironas/farmacologia , Pseudomonas/metabolismo , Pseudomonas/química , Estrutura Molecular , Metabolismo Secundário
6.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067655

RESUMO

Differentiation-inducing factor 1 (DIF-1) isolated from the cellular slime mold Dictyostelium discoideum can inhibit mammalian calmodulin-dependent cAMP/cGMP phosphodiesterase (PDE1) in vitro. DIF-1 also promotes glucose uptake, at least in part, via a mitochondria- and AMPK-dependent pathway in mouse 3T3-L1 fibroblast cells, but the mechanism underlying this effect has not been fully elucidated. In this study, we investigated the effects of DIF-1 on intracellular cAMP and cGMP levels, as well as the effects that DIF-1 and several compounds that increase cAMP and cGMP levels have on glucose uptake in confluent 3T3-L1 cells. DIF-1 at 20 µM (a concentration that promotes glucose uptake) increased the level of intracellular cAMP by about 20% but did not affect the level of intracellular cGMP. Neither the PDE1 inhibitor 8-methoxymethyl-3-isobutyl-1-methylxanthine at 10-200 µM nor the broad-range PDE inhibitor 3-isobutyl-1-methylxanthine at 40-400 µM had any marked effects on glucose uptake. The membrane-permeable cAMP analog 8-bromo-cAMP at 200-1000 µM significantly promoted glucose uptake (by 20-25%), whereas the membrane-permeable cGMP analog 8-bromo-cGMP at 3-100 µM did not affect glucose uptake. The adenylate cyclase activator forskolin at 1-10 µM promoted glucose uptake by 20-30%. Thus, DIF-1 may promote glucose uptake by 3T3-L1 cells, at least in part, via an increase in intracellular cAMP level.


Assuntos
Dictyostelium , Camundongos , Animais , Células 3T3-L1 , Transporte Biológico , Inibidores de Fosfodiesterase/farmacologia , Glucose , Mamíferos
7.
J Pharmacol Sci ; 149(3): 147-157, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641027

RESUMO

Drug development for regulating the innate immune system is important for the prevention and treatment of autoinflammatory and autoimmune diseases. In this context, we investigated the effect of resveratrol derivatives on the inflammatory reactions in the brain. Resveratrol, which can be found in Vitis plants in the form of oligomers, exhibits neuroprotective effects; however, its regulatory effects on innate immunity are still unclear. We examined the effects of (+)-hopeaphenol, a resveratrol tetramer, and its derivatives on the polyinosinic-polycytidylic acid (poly IC)-induced production of interferon (IFN)-ß and C-X-C motif chemokine 10 (CXCL10) in the cultured human cerebral microvascular endothelial cell line hCMEC/D3. (+)-Hopeaphenol (1-10 µM) inhibited the poly IC-induced production of not only CXCL10 but also retinoic acid-inducible gene-I in a dose-dependent manner and significantly reduced the poly IC-induced IFN-ß gene expression and protein release from hCMEC/D3 cells by inhibiting the phosphorylation of p65 but not that of the interferon regulatory transcription factor IRF3. A docking study indicated a high affinity of (+)-hopeaphenol for p65. These results suggest that (+)-hopeaphenol can regulate the innate immune system by inhibiting the poly IC/IFN-ß/CXCL10 signaling axis via suppression of the phosphorylation of the transcription factor NF-ĸB.


Assuntos
Células Endoteliais , Poli I-C , Quimiocina CXCL10 , Células Endoteliais/metabolismo , Humanos , Imunidade Inata , Interferon beta/metabolismo , Fenóis , Poli I-C/farmacologia , Resveratrol/farmacologia , Estilbenos
8.
Chembiochem ; 22(14): 2468-2477, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33969584

RESUMO

Plasmodium falciparum lysyl-tRNA synthetase (PfKRS) represents a promising therapeutic anti-malarial target. Cladosporin was identified as a selective and potent PfKRS inhibitor but lacks metabolic stability. Here, we report chemical synthesis, biological evaluation and structural characterization of analogues where the tetrahydropyran (THP) frame of cladosporin is replaced with the piperidine ring bearing functional group variations. Thermal binding, enzymatic, kinetic and parasitic assays complemented with X-ray crystallography reveal compounds that are moderate in potency. Co-crystals of Cla-B and Cla-C with PfKRS reveal key atomic configurations that allow drug binding to and inhibition of the enzyme. Collectively these piperidine ring scaffold inhibitors lay a framework for further structural editing and functional modifications of the cladosporin scaffold to obtain a potent lead.


Assuntos
Plasmodium falciparum
9.
Circ Res ; 125(3): 309-327, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31195886

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) accompanying increased production of inflammatory factors and adaptation of the mitochondrial metabolism to a hyperproliferative state. However, all the drugs in clinical use target pulmonary vascular dilatation, which may not be effective for patients with advanced PAH. OBJECTIVE: We aimed to discover a novel drug for PAH that inhibits PASMC proliferation. METHODS AND RESULTS: We screened 5562 compounds from original library using high-throughput screening system to discover compounds which inhibit proliferation of PASMCs from patients with PAH (PAH-PASMCs). We found that celastramycin, a benzoyl pyrrole-type compound originally found in a bacteria extract, inhibited the proliferation of PAH-PASMCs in a dose-dependent manner with relatively small effects on PASMCs from healthy donors. Then, we made 25 analogs of celastramycin and selected the lead compound, which significantly inhibited cell proliferation of PAH-PASMCs and reduced cytosolic reactive oxygen species levels. Mechanistic analysis demonstrated that celastramycin reduced the protein levels of HIF-1α (hypoxia-inducible factor 1α), which impairs aerobic metabolism, and κB (nuclear factor-κB), which induces proinflammatory signals, in PAH-PASMCs, leading to reduced secretion of inflammatory cytokine. Importantly, celastramycin treatment reduced reactive oxygen species levels in PAH-PASMCs with increased protein levels of Nrf2 (nuclear factor erythroid 2-related factor 2), a master regulator of cellular response against oxidative stress. Furthermore, celastramycin treatment improved mitochondrial energy metabolism with recovered mitochondrial network formation in PAH-PASMCs. Moreover, these celastramycin-mediated effects were regulated by ZFC3H1 (zinc finger C3H1 domain-containing protein), a binding partner of celastramycin. Finally, celastramycin treatment ameliorated pulmonary hypertension in 3 experimental animal models, accompanied by reduced inflammatory changes in the lungs. CONCLUSIONS: These results indicate that celastramycin ameliorates pulmonary hypertension, reducing excessive proliferation of PAH-PASMCs with less inflammation and reactive oxygen species levels, and recovered mitochondrial energy metabolism. Thus, celastramycin is a novel drug for PAH that targets antiproliferative effects on PAH-PASMCs.


Assuntos
Miócitos de Músculo Liso/efeitos dos fármacos , Naftoquinonas/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Pirróis/farmacologia , Resorcinóis/farmacologia , Animais , Células Cultivadas , Citocinas/biossíntese , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Indóis/toxicidade , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Monocrotalina/toxicidade , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/biossíntese , Naftoquinonas/uso terapêutico , Estresse Oxidativo , Hipertensão Arterial Pulmonar/induzido quimicamente , Artéria Pulmonar/citologia , Pirróis/uso terapêutico , Pirróis/toxicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo , Resorcinóis/uso terapêutico , Fatores de Transcrição/fisiologia
10.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669058

RESUMO

Differentiation-inducing factor-1 (DIF-1) is a chlorinated alkylphenone (a polyketide) found in the cellular slime mold Dictyostelium discoideum. DIF-1 and its derivative, DIF-1(3M) promote glucose consumption in vitro in mammalian cells and in vivo in diabetic rats; they are expected to be the leading antiobesity and antidiabetes compounds. In this study, we investigated the mechanisms underlying the actions of DIF-1 and DIF-1(3M). In isolated mouse liver mitochondria, these compounds at 2-20 µM promoted oxygen consumption in a dose-dependent manner, suggesting that they act as mitochondrial uncouplers, whereas CP-DIF-1 (another derivative of DIF-1) at 10-20 µM had no effect. In confluent mouse 3T3-L1 fibroblasts, DIF-1 and DIF-1(3M) but not CP-DIF-1 induced phosphorylation (and therefore activation) of AMP kinase (AMPK) and promoted glucose consumption and metabolism. The DIF-induced glucose consumption was reduced by compound C (an AMPK inhibitor) or AMPK knock down. These data suggest that DIF-1 and DIF-1(3M) promote glucose uptake, at least in part, via an AMPK-dependent pathway in 3T3-L1 cells, whereas cellular metabolome analysis revealed that DIF-1 and DIF-1(3M) may act differently at least in part.


Assuntos
Adenilato Quinase/metabolismo , Dictyostelium/metabolismo , Glucose/metabolismo , Hexanonas/farmacologia , Hidrocarbonetos Clorados/farmacologia , Metaboloma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Células 3T3 , Adenilato Quinase/antagonistas & inibidores , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos
11.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830383

RESUMO

The ATP-binding cassette subfamily G member 2 (ABCG2) transporter is involved in the development of multidrug resistance in cancer patients. Many inhibitors of ABCG2 have been reported to enhance the chemosensitivity of cancer cells. However, none of these inhibitors are being used clinically. The aim of this study was to identify novel ABCG2 inhibitors by high-throughput screening of a chemical library. Among the 5812 compounds in the library, 23 compounds were selected in the first screening, using a fluorescent plate reader-based pheophorbide a (PhA) efflux assay. Thereafter, to validate these compounds, a flow cytometry-based PhA efflux assay was performed and 16 compounds were identified as potential inhibitors. A cytotoxic assay was then performed to assess the effect these 16 compounds had on ABCG2-mediated chemosensitivity. We found that the phenylfurocoumarin derivative (R)-9-(3,4-dimethoxyphenyl)-4-((3,3-dimethyloxiran-2-yl)methoxy)-7H-furo [3,2-g]chromen-7-one (PFC) significantly decreased the IC50 of SN-38 in HCT-116/BCRP colon cancer cells. In addition, PFC stimulated ABCG2-mediated ATP hydrolysis, suggesting that this compound interacts with the substrate-binding site of ABCG2. Furthermore, PFC reversed the resistance to irinotecan without causing toxicity in the ABCG2-overexpressing HCT-116/BCRP cell xenograft mouse model. In conclusion, PFC is a novel inhibitor of ABCG2 and has promise as a therapeutic to overcome ABCG2-mediated MDR, to improve the efficiency of cancer chemotherapy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Furocumarinas/farmacologia , Proteínas de Neoplasias/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Citometria de Fluxo , Furocumarinas/química , Células HCT116 , Xenoenxertos , Ensaios de Triagem em Larga Escala , Humanos , Irinotecano/química , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/genética
12.
Eur J Nutr ; 59(7): 3231-3244, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31865422

RESUMO

PURPOSE: Mushrooms are reported to have a variety of health-promoting activities. However, little information is available on the effects of intake of polysaccharides from Pleurotus eryngii on obesity. In this study, we investigated the effects of P. eryngii polysaccharides on obesity and gut microbiota in mice fed a high-fat diet. METHODS: Soluble polysaccharides were extracted from P. eryngii using hot water. C57BL/6J mice were fed a standard diet (ST), a high-fat diet (HF), or HF with 1% or 5% P. eryngii polysaccharide fraction (LP or HP) for 16 weeks. Adipose tissues were weighed and blood parameters were measured. Expression of genes involved in fatty acid and cholesterol metabolism was assessed by real-time quantitative PCR. The gut microbiota composition was analysed by 16S rRNA gene sequencing. RESULTS: Body weight gain and mesenteric fat tissue were lower in the HP group than in the HF group. In the HP group, serum total cholesterol and LDL cholesterol levels decreased, and lipid and total bile acids in faeces increased. Mice in the HP group showed increased expression of the LDLR gene in the liver and GPR43 in fat. The relative abundance of Firmicutes was significantly higher in the HF and HP groups than in the ST group. The abundance of some short-chain fatty acid-producing gut bacteria was altered by P. eryngii polysaccharides. CONCLUSIONS: These results provide the first evidence that P. eryngii polysaccharides have anti-obesity and LDL cholesterol-lowering effects in obese mice through increased excretion of bile acids and lipids and altered microbiota.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/dietoterapia , Obesidade/prevenção & controle , Pleurotus/química , Polissacarídeos/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
13.
Molecules ; 25(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585998

RESUMO

We report a protoilludane-type sesquiterpene, mucoroidiol, and a geranylated bicyclogermacranol, firmibasiol, isolated from Dictyostelium cellular slime molds. The methanol extracts of the fruiting bodies of cellular slime molds were separated by chromatographic methods to give these compounds. Their structures have been established by several spectral means. Mucoroidiol and firmibasiol are the first examples of more modified and oxidized terpenoids isolated from cellular slime molds. Mucoroidiol showed moderate osteoclast-differentiation inhibitory activity despite demonstrating very weak cell-proliferation inhibitory activity. Therefore, cellular slime molds produce considerably diverse secondary metabolites, and they are promising sources of new natural product chemistry.


Assuntos
Dictyostelium/química , Terpenos/isolamento & purificação , Animais , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Dictyostelium/metabolismo , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos , Terpenos/química , Terpenos/farmacologia
14.
Biochem Biophys Res Commun ; 520(1): 140-144, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31582219

RESUMO

Differentiation-inducing factor-1 (DIF-1), a morphogen produced by the cellular slime mold Dictyostelium discoideum, is a natural product that has attracted considerable attention for its antitumor properties. Here, we report a novel inhibitory effect of DIF-1 on the activation of hepatic stellate cells (HSCs) responsible for liver fibrosis. DIF-1 drastically inhibited transdifferentiation of quiescent HSCs into myofibroblastic activated HSCs in a concentration-dependent manner, thus conferring an antifibrotic effect against in the liver. Neither SQ22536, an adenylate cyclase inhibitor, nor ODQ, a guanylate cyclase inhibitor, showed any effect on the inhibition of HSC activation by DIF-1. In contrast, TWS119, a glycogen synthase kinase 3ß (GSK3ß) inhibitor, attenuated the inhibitory effect of DIF-1. Moreover, the level of inactive GSK3ß (phosphorylated at Ser9) was significantly reduced by DIF-1. DIF-1 also inhibited nuclear translocation of ß-catenin and reduced the level of non-phospho (active) ß-catenin. These results suggest that DIF-1 inhibits HSC activation by disrupting the Wnt/ß-catenin signaling pathway through dephosphorylation of GSK3ß. We propose that DIF-1 is a possible candidate as a therapeutic agent for preventing liver fibrosis.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Células Estreladas do Fígado/efeitos dos fármacos , Hexanonas/farmacologia , Transporte Ativo do Núcleo Celular , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Antineoplásicos/farmacologia , Diferenciação Celular , Transdiferenciação Celular , Dictyostelium , Relação Dose-Resposta a Droga , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Oxidiazóis/farmacologia , Fosforilação , Pirimidinas/farmacologia , Pirróis/farmacologia , Quinoxalinas/farmacologia , Transdução de Sinais , beta Catenina/metabolismo
15.
Chemistry ; 25(4): 1106-1112, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30379362

RESUMO

The structural diversity of natural products and their derivatives have long contributed to the development of new drugs. However, the difficulty in obtaining compounds bearing skeletally novel structures has recently led to a decline of pharmaceutical research into natural products. This paper reports the construction of a meroterpenoid-like library containing 25 compounds with diverse molecular scaffolds obtained from diversity-enhanced extracts. This method constitutes an approach for increasing the chemical diversity of natural-product-like compounds by combining natural product chemistry and diversity-oriented synthesis. Extensive pharmacological screening of the library revealed promising compounds for anti-osteoporotic and anti-lymphoma/leukemia drugs. This result indicates that the use of diversity-enhanced extracts is an effective methodology for producing chemical libraries for the purpose of drug discovery.

17.
J Nat Prod ; 80(10): 2716-2722, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28921976

RESUMO

Eight chlorinated alkylresorcinols, monochasiol A-H (1-8), were isolated from the fruiting bodies of Dictyostelium monochasioides. Compounds 1-8 were synthesized to confirm their structures and to obtain sufficient material for performing biological tests. Monochasiol A (1) selectively inhibited the concanavalin A-induced interleukin-2 production in Jurkat cells, a human T lymphocyte cell line. Monochasiols were biogenetically synthesized by the combination of biosynthetic enzymes relating to the principal polyketides, MPBD and DIF-1, produced by Dictyostelium discoideum.


Assuntos
Dictyostelium/química , Hidrocarbonetos Clorados , Resorcinóis , Sobrevivência Celular/efeitos dos fármacos , Concanavalina A/farmacologia , Dictyosteliida/química , Células HeLa , Hexanonas/metabolismo , Humanos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/isolamento & purificação , Hidrocarbonetos Clorados/farmacologia , Interleucina-2/biossíntese , Células Jurkat , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Policetídeos/metabolismo , Resorcinóis/química , Resorcinóis/isolamento & purificação , Resorcinóis/farmacologia
18.
Biol Pharm Bull ; 40(11): 1941-1947, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093342

RESUMO

Differentiation-inducing factor-3 (DIF-3; 1-(3-chloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one), which is found in the cellular slime mold Dictyostelium discoideum, is a potential candidate compound for the development of new medicines; DIF-3 and its derivatives possess several beneficial biological activities, including anti-tumor, anti-Trypanosoma cruzi, and immunoregulatory effects. To assess the relationship between the biological activities of DIF-3 and its chemical structure, particularly in regard to its alkoxy group and the length of the alkyl chains at the acyl group, we synthesized two derivatives of DIF-3, 1-(3-chloro-2,6-dihydroxy-4-methoxyphenyl)octan-1-one (DIF-3(+3)) and 1-(3-chloro-2,6-dihydroxy-4-butoxyphenyl)-hexan-1-one (Hex-DIF-3), and investigated their biological activities in vitro. At micro-molar levels, DIF-3(+3) and Hex-DIF-3 exhibited strong anti-proliferative effects in tumor cell cultures, but their anti-T. cruzi activities at 1 µM in vitro were not as strong as those of other known DIF derivatives. In addition, Hex-DIF-3 at 5 µM significantly suppressed mitogen-induced interleukin-2 production in vitro in Jurkat T cells. These results suggest that DIF-3(+3) and Hex-DIF-3 are promising leads for the development of anti-cancer and immunosuppressive agents.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Dictyostelium/metabolismo , Hexanonas/farmacologia , Imunossupressores/farmacologia , Células 3T3 , Animais , Química Farmacêutica , Relação Dose-Resposta a Droga , Células HeLa , Hexanonas/química , Humanos , Concentração Inibidora 50 , Interleucina-2/metabolismo , Células Jurkat , Camundongos , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
19.
Chemistry ; 22(44): 15819-15825, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27624861

RESUMO

Many natural terpenoid alkaloid conjugates show biological activity because their structures contain both sp3 -rich terpenoid scaffolds and nitrogen-containing alkaloid scaffolds. However, their biosynthesis utilizes a limited set of compounds as sources of the terpenoid moiety. The production of terpenoid alkaloids containing various types of terpenoid moiety may provide useful, chemically diverse compound libraries for drug discovery. Herein, we report the construction of a library of terpenoid alkaloid-like compounds based on Lewis-acid-catalyzed transannulation of humulene diepoxide and subsequent sequential olefin metathesis. Cheminformatic analysis quantitatively showed that the synthesized terpenoid alkaloid-like compound library has a high level of three-dimensional-shape diversity. Extensive pharmacological screening of the library has led to the identification of promising compounds for the development of antihypolipidemic drugs. Therefore, the synthesis of terpenoid alkaloid-like compound libraries based on humulene is well suited to drug discovery. Synthesis of terpenoid alkaloid-like compounds based on several natural terpenoids is an effective strategy for producing chemically diverse libraries.


Assuntos
Alcaloides/química , Terpenos/química , Descoberta de Drogas , Estrutura Molecular , Sesquiterpenos Monocíclicos , Extratos Vegetais , Sesquiterpenos , Bibliotecas de Moléculas Pequenas
20.
J Pharmacol Sci ; 131(1): 51-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27165707

RESUMO

An abnormally high serum phosphate level induces calcific aortic stenosis (CAS), which is characterized by ectopic valve calcification and stenosis of the orifice area. Inhibition of ectopic calcification is a critical function of any internal medical therapy for CAS disease. The aim of the present study was to investigate the inhibitory effects of several derivatives of evocarpine, methanolic extracts from the fruits of Evodia rutaecarpa Bentham (Japanese name: Go-Shu-Yu) on the high phosphate-induced calcification of human aortic valve interstitial cells (HAVICs) obtained from patients with CAS. High phosphate (3.2 mM) concentrations significantly increased the calcification of HAVICs after 7 days of culture. This calcification was completely inhibited in the presence of sodium phosphonoformate (PFA), a selective inhibitor of the type III sodium-dependent phosphate cotransporter (PiT-1). PiT-1 contributes to phosphate uptake, resulting in calcification. 1-Methyl-2-undecyl-4(1H)-quinolone (MUQ; 30-300 nM), but not evocarpine or its derivatives dihydroevocarpine and 1-methyl-2-nonyl-4(1H)-quinolone, inhibited the high phosphate-induced HAVICs calcification in a concentration-dependent manner. Although all of the evocarpine derivatives attenuated alkaline phosphatase activity, only MUQ also decreased PiT-1 gene expression with cellular PiT-1 protein diminution. These results suggest that MUQ mitigated high phosphate-induced HAVICs calcification by inhibiting PiT-1 gene expression.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Quinolonas/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/antagonistas & inibidores , Idoso , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA