RESUMO
Over the last decade, functional ultrasound (fUS) has risen as a critical tool in functional neuroimaging, leveraging hemodynamic changes to infer neural activity indirectly. Recent studies have established a strong correlation between neural spike rates (SR) and functional ultrasound signals. However, understanding their spatial distribution and variability across different brain areas is required to thoroughly interpret fUS signals. In this regard, we conducted simultaneous fUS imaging and Neuropixels recordings during stimulus-evoked activity in awake mice within three regions the visual pathway. Our findings indicate that the temporal dynamics of fUS and SR signals are linearly correlated, though the correlation coefficients vary among visual regions. Conversely, the spatial correlation between the two signals remains consistent across all regions with a spread of approximately 300 micrometers. Finally, we introduce a model that integrates the spatial and temporal components of the fUS signal, allowing for a more accurate interpretation of fUS images.
RESUMO
Positioning and navigation are essential components of neuroimaging as they improve the quality and reliability of data acquisition, leading to advances in diagnosis, treatment outcomes, and fundamental understanding of the brain. Functional ultrasound imaging is an emerging technology providing high-resolution images of the brain vasculature, allowing for the monitoring of brain activity. However, as the technology is relatively new, there is no standardized tool for inferring the position in the brain from the vascular images. In this study, we present a deep learning-based framework designed to address this challenge. Our approach uses an image classification task coupled with a regression on the resulting probabilities to determine the position of a single image. To evaluate its performance, we conducted experiments using a dataset of 51 rat brain scans. The training positions were extracted at intervals of 375 µm, resulting in a positioning error of 176 µm. Further GradCAM analysis revealed that the predictions were primarily driven by subcortical vascular structures. Finally, we assessed the robustness of our method in a cortical stroke where the brain vasculature is severely impaired. Remarkably, no specific increase in the number of misclassifications was observed, confirming the method's reliability in challenging conditions. Overall, our framework provides accurate and flexible positioning, not relying on a pre-registered reference but rather on conserved vascular patterns.
RESUMO
This paper presents a novel fabrication process that allows integration of polydimethylsiloxane (PDMS)-based microfluidic channels and metal electrodes on a wafer with a micrometer-range alignment accuracy. This high level of alignment accuracy enables integration of microwave and microfluidic technologies, and furthermore accurate microwave dielectric characterization of biological liquids and chemical compounds on a nanoliter scale. The microfluidic interface between the pump feed lines and the fluidic channels was obtained using magnets fluidic connection. The tube-channel interference and the fluidic channel-wafer adhesion was evaluated, and up to a pressure of 700 mBar no leakage was observed. The developed manufacturing process was tested on a design of a microwave-microfluidic capacitive sensor. An interdigital capacitor (IDC) and a microfluidic channel were manufactured with an alignment accuracy of 2.5 µm. The manufactured IDC sensor was used to demonstrate microwave dielectric sensing on deionized water and saline solutions with concentrations of 0.1, 0.5, 1, and 2.5 M.
RESUMO
In the quest for chronically reliable and bio-tolerable brain interfaces there has been a steady evolution towards the use of highly flexible, polymer-based electrode arrays. The reduced mechanical mismatch between implant and brain tissue has shown to reduce the evoked immune response, which in turn has a positive effect on signal stability and noise. Unfortunately, the low stiffness of the implants also has practical repercussions, making surgical insertion extremely difficult. In this work we explore the use of dextran as a coating material that temporarily stiffens the implant, preventing buckling during insertion. The mechanical properties of dextran coated neural probes are characterized, as well as the different parameters which influence the dissolution rate. Tuning parameters, such as coating thickness and molecular weight of the used dextran, allows customization of the stiffness and dissolution time to precisely match the user's needs. Finally, the immunological response to the coated electrodes was analyzed by performing a histological examination after four months of in vivo testing. The results indicated that a very limited amount of glial scar tissue was formed. Neurons have also infiltrated the area that was initially occupied by the dissolving dextran coating. There was no noticeable drop in neuron density around the site of implantation, confirming the suitability of the coating as a temporary aid during implantation of highly flexible polymer-based neural probes.
RESUMO
In recent years, Teflon-on-glass microwells have been successfully implemented in bead-based digital bioassays for the sensitive detection of single target molecules. Their hydrophilic-in-hydrophobic (HIH) nature enables the isolation and analysis of individual beads, carrying the target molecules, which can be further manipulated accurately through optical tweezer (OT) setups. However, these Teflon HIH-microwell platforms are conventionally fabricated through a complex, time-consuming and labor-intensive dry lift-off procedure which involves a series of major steps, limiting the up-scaling potential of these platforms. Alternative Teflon-based microwell fabrication methods have been extensively explored in literature but they preclude the generation of hydrophobic wells with hydrophilic bottom, thereby hampering the bioassay performance. Here, we present a new Teflon-on-glass molding method for the high throughput fabrication of hydrophilic-in-hydrophobic (HIH) microwell arrays, able to empower bead-based digital bioassays. Microwells 2.95 µm in depth and 3.86 µm in diameter were obtained to host individual beads. In these microwell arrays, sealing of reagents was demonstrated with an efficiency of 100% and seeding of superparamagnetic beads was achieved with an efficiency of 99.6%. The proposed method requires half as many steps when compared to the traditional dry lift-off process, is freely scalable and has the potential to be implemented in different bead-based bioassay applications.
RESUMO
OBJECTIVE: This study describes the design and microfabrication of a foldable thin-film neural implant and investigates its suitability for electrical recording of deep-lying brain cavity walls. APPROACH: A new type of foldable neural electrode array is presented, which can be inserted through a cannula. The microfabricated electrode is specifically designed for electrical recording of the cavity wall of thalamic lesions resulting from stroke. The proof-of-concept is demonstrated by measurements in rat brain cavities. On implantation, the electrode array unfolds in the brain cavity, contacting the cavity walls and allowing recording at multiple anatomical locations. A three-layer microfabrication process based on UV-lithography and Reactive Ion Etching is described. Electrochemical characterization of the electrode is performed in addition to an in vivo experiment in which the implantation procedure and the unfolding of the electrode are tested and visualized. MAIN RESULTS: Electrochemical characterization validated the suitability of the electrode for in vivo use. CT imaging confirmed the unfolding of the electrode in the brain cavity and analysis of recorded local field potentials showed the ability to record neural signals of biological origin. SIGNIFICANCE: The conducted research confirms that it is possible to record neural activity from the inside wall of brain cavities at various anatomical locations after a single implantation procedure. This opens up possibilities towards research of abnormal brain cavities and the clinical conditions associated with them, such as central post-stroke pain.
Assuntos
Potenciais de Ação/fisiologia , Eletrodos Implantados , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Animais , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estimulação Elétrica/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Tálamo/anormalidadesRESUMO
OBJECTIVE: This study investigates the suitability of a thin sheet of extracellular matrix (ECM) proteins as a resorbable coating for temporarily reinforcing fragile or ultra-low stiffness thin-film neural implants to be placed on the brain, i.e. microelectrocorticographic (µECOG) implants. APPROACH: Thin-film polyimide-based electrode arrays were fabricated using lithographic methods. ECM was harvested from porcine tissue by a decellularization method and coated around the arrays. Mechanical tests and an in vivo experiment on rats were conducted, followed by a histological tissue study combined with a statistical equivalence test (confidence interval approach, 0.05 significance level) to compare the test group with an uncoated control group. MAIN RESULTS: After 3 months, no significant damage was found based on GFAP and NeuN staining of the relevant brain areas. SIGNIFICANCE: The study shows that ECM sheets are a suitable temporary coating for thin µECOG neural implants.
Assuntos
Encéfalo/citologia , Materiais Revestidos Biocompatíveis/síntese química , Eletrocorticografia/instrumentação , Eletrodos Implantados , Proteínas da Matriz Extracelular/química , Análise em Microsséries/instrumentação , Adsorção , Animais , Encéfalo/cirurgia , Módulo de Elasticidade , Impedância Elétrica , Eletrocorticografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Masculino , Teste de Materiais , Membranas Artificiais , Ratos , Ratos Wistar , Estereolitografia , Suínos , Resistência à TraçãoRESUMO
Bead-based microwell array technology is growing as an ultrasensitive analysis tool as exemplified by the successful commercial applications from Illumina and Quanterix for nucleic acid analysis and ultrasensitive protein measurements, respectively. High-efficiency seeding of magnetic beads is key for these applications and is enhanced by hydrophilic-in-hydrophobic microwell arrays, which are unfortunately often expensive or labor-intensive to manufacture. Here, we demonstrate a new single-step manufacturing approach for imprinting cheap and disposable hydrophilic-in-hydrophobic microwell arrays suitable for digital bioassays. Imprinting of arrays with hydrophilic-in-hydrophobic microwells is made possible using an innovative surface energy replication approach by means of a hydrophobic thiol-ene polymer formulation. In this polymer, hydrophobic-moiety-containing monomers self-assemble at the hydrophobic surface of the imprinting stamp, which results in a hydrophobic replica surface after polymerization. After removing the stamp, microwells with hydrophobic walls and a hydrophilic bottom are obtained. We demonstrate that the hydrophilic-in-hydrophobic imprinted microwell arrays enable successful and efficient self-assembly of individual water droplets and seeding of magnetic beads with loading efficiencies up to 96%. We also demonstrate the suitability of the microwell arrays for the isolation and digital counting of single molecules achieving a limit of detection of 17.4 aM when performing a streptavidin-biotin binding assay as model system. Since this approach is up-scalable through reaction injection molding, we expect it will contribute substantially to the translation of ultrasensitive digital microwell array technology toward diagnostic applications.