RESUMO
The effect on the phytochrome system of light regimes establishing a range of photoequilibria was studied in two light grown dicotyledonous plants, both of which were treated with the herbicide SAN 9789 to prevent chlorophyll accumulation. In Sinapis alba L. cotyledons the results are comparable with phytochrome behaviour in etiolated mustard seedlings; the level of Pfr becomes independent of wave-length whereas the total phytochrome level is wave-length dependent. Contrasting properties are exhibited in Phaseolus aureus Roxb. leaves in which total phytochrome is unaffected by light quality; consequently the Pfr level is dependent on wavelength. Nevertheless, the amount of phytochrome in mung leaves increased after transfer to darkness suggesting that light still has a profound influence on the phytochrome system, even though light quality during the light period and prior to darkness does not.
RESUMO
The characteristics of the 'high-irradiance response' (HIR) of plant photomorphogenesis are thought to be the result of the interaction of both the light and dark reactions of phytochrome. Thus any variation in the rates of the dark reactions may be expected to lead to variation in the characteristics of the HIR. We report here substantial differences in the rates of the dark reactions between different seed batches of a single species (Sinapis alba L.), and also between different organs of seedlings from each of the batches of seed. Calculations of phytochrome dynamics from the measured dark-reaction rates show that the behaviour of Pfr under HIR conditions will vary considerably according to seed batch and seedling organ. Much larger differences in dark-reaction rates, and the resulting phytochrome dynamics, were found between 25° and 10° C. These lead to the prediction that the HIR will be much reduced at the lower temperature, and may be absent in some cases.