Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076322

RESUMO

HPV16 E6 oncoprotein is a member of the human papillomavirus (HPV) family that contributes to enhanced cellular proliferation and risk of cervical cancer progression via viral infection. In this study, interferon regulatory factor-1 (IRF-1) regulates cell growth inhibition and transcription factors in immune response, and acts as an HPV16 E6-binding cellular molecule. Over-expression of HPV16 E6 elevated cell growth by attenuating IRF-1-induced apoptosis and repressing p21 and p53 expression, but activating cyclin D1 and nuclear factor kappa B (NF-κB) expression. The promoter activities of p21 and p53 were suppressed, whereas NF-κB activities were increased by HPV16 E6. Additionally, the cell viability of HPV16 E6 was diminished by IRF-1 in a dose-dependent manner. We found that HPV16 E6 activated vascular endothelial growth factor (VEGF)-induced endothelial cell migration and proliferation as well as phosphorylation of VEGFR-2 via direct interaction in vitro. HPV16 E6 exhibited potent pro-angiogenic activity and clearly enhanced the levels of hypoxia-inducible factor-1α (HIF-1α). By contrast, the loss of function of HPV16 E6 by siRNA-mediated knockdown inhibited the cellular events. These data provide direct evidence that HPV16 E6 facilitates tumour growth and angiogenesis. HPV16 E6 also activates the PI3K/mTOR signalling cascades, and IRF-1 suppresses HPV16 E6-induced tumourigenesis and angiogenesis. Collectively, these findings suggest a biological mechanism underlying the HPV16 E6-related activity in cervical tumourigenesis.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Papillomavirus Humano 16/patogenicidade , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator Regulador 1 de Interferon/genética , NF-kappa B/metabolismo , Neovascularização Patológica/virologia , Proteínas Oncogênicas Virais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/virologia
2.
Biochem Biophys Res Commun ; 435(1): 153-9, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23628417

RESUMO

In this current work, we investigated whether BLU could enhance pro-apoptotic activity of chemotherapeutic drugs in ovarian carcinoma cells. A combination with a chemotherapeutic drug showed an additive effect, and this additive effect was supplemented by the enhancement of caspase-3 and -9 activities. BLU and paclitaxel induced cell cycle arrest in the G2/M phase through the reduction of cyclin dependent kinase 1, cyclin B1, while promoting both p16 and p27 expression. In addition, both BLU and paclitaxel enhanced the expression of the pro-apoptotic protein Bax together with the suppression of anti-apoptotic protein Bcl-2, a protein which is well-known for its function as a regulator in protecting cells from apoptosis. As expected, the Bax and p21 activities were enhanced by BLU or paclitaxel, while a combination of BLU and paclitaxel were additively promoted, whereas Bcl-xL and NF-κB including Bcl-2 activity were inactivated. This study has yielded promising results, which evidence for the first time that BLU could suppress the growth of carcinoma cells. Furthermore, both BLU and paclitaxel inhibited the phosphorylation of signaling components downstream of phosphoinositide 3-kinase, such as 3-phosphoinositide-dependent protein kinase 1, and Akt. Also, BLU plus paclitaxel decreased phosphorylation of p70 ribosomal S6 kinase, as well as decreasing the phosphorylation of glycogen synthase kinase-3ß, which is one of the representative targets of the mammalian target of rapamycin signaling cascade. These results provide evidence that BLU enhances G2/M cell cycle arrest and apoptotic cell death through the up-regulation of Bax, p21 and p53 expression.


Assuntos
Apoptose/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Proteínas do Citoesqueleto , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Immunoblotting , Luciferases/genética , Luciferases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transfecção , Proteínas Supressoras de Tumor/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
3.
Biomol Ther (Seoul) ; 31(4): 456-465, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357018

RESUMO

Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

4.
Biomol Ther (Seoul) ; 31(3): 330-339, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37095735

RESUMO

Liver kinase B1 (LKB1) is a crucial tumor suppressor involved in various cellular processes, including embryonic development, tumor initiation and progression, cell adhesion, apoptosis, and metabolism. However, the precise mechanisms underlying its functions remain elusive. In this study, we demonstrate that LKB1 interacts directly with malic enzyme 3 (ME3) through the N-terminus of the enzyme and identified the binding regions necessary for this interaction. The binding activity was confirmed to promote the expression of ME3 in an LKB1-dependent manner and was also shown to induce apoptosis activity. Furthermore, LKB1 and ME3 overexpression upregulated the expression of tumour suppressor proteins (p53 and p21) and downregulated the expression of antiapoptotic proteins (nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and B-cell lymphoma 2 (Bcl-2)). Additionally, LKB1 and ME3 enhanced the transcription of p21 and p53 and inhibited the transcription of NF-κB. Moreover, LKB1 and ME3 suppressed the phosphorylation of various components of the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B signaling pathway. Overall, these results suggest that LKB1 promotes pro-apoptotic activities by inducing ME3 expression.

5.
Apoptosis ; 17(10): 1095-103, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22903553

RESUMO

Recently, we reported that sMEK1 is down-regulated in cancer cells and tissues, and that it enhances the pro-proliferative effect as a novel pro-apoptotic protein. However, the biological mechanism of the sMEK1 tumor suppressor in the cellular signal pathway has not been well understood. In our current work, we examined whether sMEK1 could promote the cytotoxic activity of gemcitabine in the human ovarian carcinoma system. Initially, we attempted to use a treatment of gemcitabine traditional chemotherapeutic agent and over-expression of sMEK1 in OVCAR-3 cancer cells. The combined treatment of sMEK1 and gemcitabine was more effective at inhibiting cell proliferation than either chemotherapeutic agent treatment alone. In addition, sMEK1 actively contributes to cell migration through its ability to promote gemcitabine-inhibited cell migration in tumorigenesis. Cell cycle-related proteins are highly associated with the down-regulation of cyclin D1 and CDK4, and the promotion of p16 and p27 as a cyclin-dependent kinase inhibitor. At the same time, sMEK1 arrests cell cycle progression in the G(1)-G(0) phase, and activates p53 and p21 expression, whereas Bcl-2 and Bcl-xL protein expression is reduced. Additionally, sMEK1 and gemcitabine suppresses the phosphorylation of signaling modulators downstream of PI3K, such as PDK1 and Akt. The p53 and p21 promoter luciferase activities were promoted by either sMEK1 or gemcitabine, and sMEK1 and gemcitabine combined additively activated the promoter further. Furthermore, as expected, sMEK1 plus gemcitabine markedly reduced the phosphorylation of p70S6K and the phosphorylation of 4E-BP1, which is one of the best characterized targets of the mTOR complex cascade. Taken together, these results provide evidence that sMEK1 can effectively regulate the pro-apoptotic activity of gemcitabine through the up-regulation of p53 expression.


Assuntos
Desoxicitidina/análogos & derivados , Fosfoproteínas Fosfatases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Carcinoma Epitelial do Ovário , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Desoxicitidina/uso terapêutico , Regulação para Baixo , Feminino , Humanos , Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Fosforilação , Proteína Supressora de Tumor p53/biossíntese , Gencitabina
6.
Apoptosis ; 17(9): 989-97, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22460505

RESUMO

Recently, thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), a well-known anti-psychotic agent was found to have anti-cancer activity in cancer cells. However, the molecular mechanism of the agent in cellular signal pathways has not been well defined. Thioridazine significantly increased early- and late-stage apoptotic fraction in cervical and endometrial cancer cells, suggesting that suppression of cell growth by thioridazine was due to the induction of apoptosis. Cell cycle analysis indicated thioridazine induced the down-regulation of cyclin D1, cyclin A and CDK4, and the induction of p21 and p27, a cyclin-dependent kinase inhibitor. Additionally, we compared the influence of thioridazine with cisplatin used as a control, and similar patterns between the two drugs were observed in cervical and endometrial cancer cell lines. Furthermore, as expected, thioridazine successfully inhibited phosphorylation of Akt, phosphorylation of 4E-BP1 and phosphorylation of p70S6K, which is one of the best characterized targets of the mTOR complex cascade. These results suggest that thioridazine effectively suppresses tumor growth activity by targeting the PI3K/Akt/mTOR/p70S6K signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Endométrio/metabolismo , Tioridazina/farmacologia , Neoplasias do Colo do Útero/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 3/metabolismo , Proteínas de Ciclo Celular , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclina A/biossíntese , Ciclina D1/biossíntese , Quinase 4 Dependente de Ciclina/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Regulação para Baixo , Feminino , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
Microvasc Res ; 84(3): 227-34, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23022044

RESUMO

Thioridazine is a type of anti-psychotic drug that also includes anti-tumor activity. In this study, we assessed the effects of thioridazine, as a novel anti-angiogenic agent, on the suppression of angiogenesis-mediated cell proliferation. Thioridazine was found to inhibit growth in ovarian cancer cells (OVCAR-3 and 2774), but did not possess any inhibitory effects on normal cell types such as HOSE-E6E7, MCF-10A, MRC-5, and BEAS-2B. Thioridazine also suppressed vascular endothelial growth factor (VEGF)-stimulated HUVEC migration in a dose-time-dependent manner. We also showed that being treated with thioridazine inhibited VEGF-stimulated proliferation, invasion, and capillary-like structure tube formation in vitro. Thioridazine suppressed phosphorylation of the signaling regulators downstream of the focal adhesion kinase (FAK) through αvß3 integrin, which also include Akt, phosphoinositide-dependent protein kinase 1 (PDK-1), mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), but had no effect on VEGF-stimulated extracellular signal-regulated kinase (ERK) phosphorylation. We found the molecular mechanism of thioridazine to be a novel anti-angiogenic protein. These results provide evidence for the regulation of endothelial cell functions that are relevant to angiogenesis through the suppression of the αvß3/FAK/mTOR signaling pathway.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Serina-Treonina Quinases TOR/metabolismo , Tioridazina/farmacologia , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina alfaVbeta3/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais
8.
Biomol Ther (Seoul) ; 30(4): 380-388, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35711139

RESUMO

Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

9.
Biomol Ther (Seoul) ; 30(6): 593-602, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305294

RESUMO

The human papillomavirus (HPV)-18 E7 (E7) oncoprotein is a major transforming protein that is thought to be involved in the development of cervical cancer. It is well-known that E7 stimulates tumour development by inactivating pRb. However, this alone cannot explain the various characteristics acquired by HPV infection. Therefore, we examined other molecules that could help explain the acquired cancer properties during E7-induced cancer development. Using the yeast two-hybrid (Y2H) method, we found that the Elk-1 factor, which is crucial for cell proliferation, invasion, cell survival, anti-apoptotic activity, and cancer development, binds to the E7. By determining which part of E7 binds to which domain of Elk-1 using the Y2H method, it was found that CR2 and CR3 of the E7 and parts 1-206, including the ETS-DNA domain of Elk-1, interact with each other. As a result of their interaction, the transcriptional activity of Elk-1 was increased, thereby increasing the expression of target genes EGR-1, c-fos, and E2F. Additionally, the colony forming assay revealed that overexpression of Elk-1 and E7 promotes C33A cell proliferation. We expect that the discovery of a novel E7 function as an Elk-1 activator could help explain whether the E7 has novel oncogenic activities in addition to p53 inactivation. We also expect that it will offer new methods for developing improved strategies for cervical cancer treatment.

10.
Gynecol Oncol ; 120(1): 121-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21035837

RESUMO

OBJECTIVE: Thioridazine, a derivative of phenothiazine, has been reported to have antiproliferative activity on tumor cells. However, the mechanism has not been well defined. METHODS: Using in-silico gene signature based approach, we have demonstrated that thioridazine could inhibit phosphatidylinositol-3'-kinase (PI3K)/Akt pathway, and thus exert cytotoxicity in ovarian cancer cells. RESULTS: The Connectivity Map indicated that thioridazine induces gene signature similar to that of Akt inhibition. Moreover, preexisting inhibitors of PI3K/Akt pathway were also found to reveal similar signature. In SKOV-3 cells, immunoblot using p85 antibody showed that thioridazine could inhibit PI3K signal. In addition, thioridazine was found to inhibit p-Akt (Ser 473) in a dose-dependent manner. Furthermore, thioridazine was found to decrease cell viability and induce apoptosis. Exposure to thioridazine induced G(0)/G(1) arrest and down-regulated the cell cycle regulator, Cyclin D1 and CDK4, and up-regulated p21, p16, and p-CDC25A. Finally, additive cytotoxicity was observed when cisplatin and thioridazine were treated simultaneously. CONCLUSIONS: The current study indicated that in-silico approach, such as Connectivity Map, is a potentially useful method to identify the unknown cellular function among the drugs already in use in clinic. Owing to the property of Akt inhibition and additive cytotoxicity observed with the platinum compound, further research should be focused on this drug.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Tioridazina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Feminino , Fase G1/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tioridazina/administração & dosagem
11.
Biomol Ther (Seoul) ; 29(6): 650-657, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607979

RESUMO

Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphateactivated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.

12.
Biomol Ther (Seoul) ; 29(5): 506-518, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462379

RESUMO

The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the threedimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3ß signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.

13.
Oncol Rep ; 37(1): 579-586, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27878292

RESUMO

The B lymphoma Mo-MLV insertion region 1 homolog (BMI-1) protein is activated in various types of tumors and associated with cancer development and tumor progression. However, the working role of BMI-1 in cellular signaling is not understood completely. In this study, we revealed one possible biologic mechanism of BMI-1 in cancer progression in vitro using a human ovarian tumor cell system. Suppressor of MEK1 (sMEK1), a pivotal regulator involved in the cellular biological response mechanism, was identified as a BMI-1-binding protein. Ectopic expression of BMI-1 activated cell growth by reducing sMEK1-stimulated apoptotic cell death and suppressing p21, p27 and p53 expression, while enhancing cyclin D1, CDK4 and Bcl-2 expression. The effect of BMI-1 on cell cycle and apoptotic regulatory proteins was also confirmed via silencing of BMI-1 expression. Subsequently, the promoter activities of p21 and p53 were inactivated significantly. However, BMI-1 overexpression noticeably increased Bcl-2 and NF-κB activities. In addition, BMI-1 activated the PI3K/mTOR/4E-BP1 signaling pathways, and sMEK1 significantly inhibited BMI-1-stimulated oncogenesis. These insights provide evidence that BMI-1 activates cell growth and suppresses apoptosis. Collectively, our data indicate that BMI-1 plays a pivotal role in the progression of ovarian cancer, thus representing a novel target for antitumor therapy of ovarian cancer.


Assuntos
Apoptose , Fosfoproteínas Fosfatases/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Apoptose/genética , Morte Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Feminino , Células HEK293 , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Transfecção
14.
Oncotarget ; 8(58): 97990-98003, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29228668

RESUMO

Colony stimulating factor 1 receptor (CSF-1R) regulates the monocyte/macrophage system, which is an essential component of cancer development. Therefore, CSF-1R might be an effective target for anti-cancer therapy. The overexpression of transforming growth factor (TGF)-ß stimulated clone-22 (TSC-22) inhibits cancer cell proliferation and induces apoptosis, and TSC-22 is emerging as a key factor in tumorigenesis. In this study, we discovered CSF-1R as a new interacting partner of TSC-22 and identified its elevated expression in cervical cancer cells. In particular, we found that TSC-22 interacted with the intracellular tyrosine kinase insert domain (539-749) of CSF-1R, which activates the AKT and ERK signaling pathways. This binding blocked AKT and ERK signaling, thereby suppressing the transcriptional activity of NF-κB. The overexpression of TSC-22 significantly decreased CSF-1R protein levels, affecting their autocrine loop. TSC-22 injected into a xenograft mouse model of human cervical cancer markedly inhibited tumor growth. The reduction of CSF-1R protein significantly suppresses cervical cancer cell proliferation and motility and induces apoptotic cell death. This association between TSC-22 and CSF-1R could be used as a novel therapeutic target and prognostic marker for cervical cancer.

15.
Oncol Rep ; 35(2): 1041-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26555156

RESUMO

Myristoylated alanine-rich C kinase substrate-like 1 (MARCKSL1) plays a pivotal role in the regulation of apoptosis and has been shown to maintain antitumor and metastasis-suppressive properties. In the present study, we examined the effects of MARCKSL1 as a novel anti-angiogenic agent on the inhibition of angiogenesis-mediated cell migration. MARCKSL1 also reduced vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) proliferation, as well as capillary-like tubular structure formation in vitro. MARCKSL1 disrupted phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) in ovarian tumorigenesis. In addition, MARCKSL1 showed potent anti-angiogenic activity and reduced the levels of VEGF and hypoxia-inducible factor 1α (HIF-1α) expression, an essential regulator of angiogenesis. Consistently, MARCKSL1 decreased VEGF­induced phosphorylation of the PI3K/Akt signaling pathway components, including phosphoinositide-dependent protein kinase 1 (PDK-1), mammalian target of rapamycin (mTOR), tuberous sclerosis complex 2 (TSC-2), p70 ribosomal protein S6 kinase (p70S6K), and glycogen synthase kinase 3ß (GSK-3ß) protein. Collectively, our results provide evidence for the physiological/biological function of an endothelial cell system involved in angiogenesis through suppression of Akt/PDK-1/mTOR phosphorylation by interaction with VEGFR-2.


Assuntos
Células Endoteliais/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Neovascularização Patológica/fisiopatologia , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Proteínas de Ligação a Calmodulina , Linhagem Celular Tumoral , Movimento Celular , Feminino , Quinase 3 da Glicogênio Sintase/biossíntese , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Neoplasias Ovarianas/patologia , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/biossíntese , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Técnicas do Sistema de Duplo-Híbrido
16.
Cell Signal ; 27(11): 2150-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26278164

RESUMO

In this study, we investigated a possible mechanism of ß2-microglobulin (ß2M) function in cancer metastases in vitro, using a human ovarian carcinoma cell line. ß2M, a modulator acts as a cell growth-promoting and cellular signaling factors, was identified as a dickkopf-3 (DKK-3) interacting protein. We also observed that DKK-3 suppresses endothelial cell angiogenesis of ß2M through vascular endothelial growth factor receptor-2 (VEGFR-2) in tumorigenesis. Luciferase activity was remarkably reduced by the transfection of DKK-3 in a dose-dependent manner. In addition, over-expression of ß2M activates cell growth by suppressing DKK-3-induced apoptosis. The effect of ß2M on cell cycle and apoptosis-regulatory components was also confirmed through the silencing of ß2M expression. Furthermore, induction of ß2M-mediated VEGFR-2/Akt/mTOR phosphorylation and tumor angiogenesis was significantly suppressed by over-expression of DKK-3. Taken together, our results suggest an underlying mechanism for an increase of ß2M-related activity in ovarian tumor cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Microglobulina beta-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose/genética , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/patologia , Quimiocinas , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Luciferases/metabolismo , Metástase Neoplásica/patologia , Neovascularização Patológica/patologia , Fosforilação , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Microglobulina beta-2/genética
17.
Oncotarget ; 6(31): 31830-43, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26378810

RESUMO

The suppressor of MEK null (sMEK1) protein possesses pro-apoptotic activities. In the current study, we reveal that sMEK1 functions as a novel anti-angiogenic factor by suppressing vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, and capillary-like tubular structure in vitro. In addition, sMEK1 inhibited the phosphorylation of the signaling components up- and downstream of Akt, including phospholipase Cγ1 (PLC-γ1), 3-phosphoinositide-dependent protein kinase 1 (PDK1), endothelial nitric oxide synthetase (eNOS), and hypoxia-inducible factor 1 (HIF-1α) during ovarian tumor progression via binding with vascular endothelial growth factor receptor 2 (VEGFR-2). Furthermore, sMEK1 decreased tumor vascularity and inhibited tumor growth in a xenograft human ovarian tumor model. These results supply convincing evidence that sMEK1 controls endothelial cell function and subsequent angiogenesis by suppressing VEGFR-2-mediated PI3K/Akt/eNOS signaling pathway. Taken together, our results clearly suggest that sMEK1 might be a novel anti-angiogenic and anti-tumor agent for use in ovarian tumor.


Assuntos
Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Neoplasias Ovarianas/patologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Western Blotting , Movimento Celular , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica , Neoplasias Ovarianas/metabolismo , Fosforilação , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Genes Cancer ; 5(11-12): 470-479, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25568671

RESUMO

Doxazosin, a commonly prescribed treatment for patients with benign prostatic hyperplasia, serves as an α1-blocker of the adrenergic receptors. In this study, we calculated its effect on the ovarian carcinoma cells. Doxazosin induces dose-dependent growth suppression and is additively activated through IFN-α or IFN-γ stimulation. They both enhanced G1 phase arrest, as well as the activity of caspase-3, and the reduction of cyclin D1 and CDK4 protein levels. Doxazosin growth suppression was abolished either by the Janus family of tyrosine kinase (JAK) or the signal transducer and activator of transcription (STAT) inhibitor treatment. The activity of JAK/STAT was dependent on the level of doxazosin, suggesting a requirement of doxazosin for the activation of JAK/STAT. Furthermore, doxazosin plus IFN-α or doxazosin plus IFN-γ additively suppressed the activation of the JAK/STAT signals through phosphorylation of JAK and STAT, thus affecting the activation of subsequent downstream signaling components PI3K, mTOR, 70S6K, and PKCδ. In vivo study demonstrated that doxazosin significantly suppressed tumor growth in an ovarian cancer cell xenograft mouse model, inducing apoptotic cell death by up-regulating the expression of p53, whereas c-Myc expression was markedly reduced. Our data indicate that doxazosin can modulate the apoptotic effects of IFN-α- and IFN-γ through the JAK/STAT signaling pathways. Collectively, we indicate that this action may be a potent chemotherapeutic property against ovarian carcinoma.

19.
Oncol Rep ; 31(2): 1021-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24337450

RESUMO

Death-associated protein kinase (DAPK) plays an important role in apoptosis regulation and has been shown to maintain antitumor and metastasis suppressor properties. In the present study, we investigated whether DAPK overexpression may mediate vascular endothelial growth factor (VEGF)/hypoxia-inducible factor-1α (HIF-1α) expression and angiogenic activity in the human carcinoma cell model system. VEGF plays a pivotal role in tumor angiogenesis and tumorigenesis. We found that DAPK significantly downregulated VEGF-induced endothelial cell proliferation, migration and tube formation as well as VEGF receptor-2 (VEGFR-2) phosphorylation in vitro. In addition, DAPK exhibited potent anti-angiogenic activity and clearly decreased the levels of VEGF and HIF-1α expression, a key regulator for angiogenesis. Notably, our results strongly indicated that DAPK can disturb VEGFR-2 transcriptional activity by inhibiting VEGFR-2 phosphorylation through the PI3K/Akt signaling cascade. Collectively, our study identified a novel function of DAPK in regulating cellular VEGF/HIF-1α activity during tumorigenesis, which may act together with its anti-angiogenic function to inhibit tumor progression.


Assuntos
Inibidores da Angiogênese/genética , Proteínas Quinases Associadas com Morte Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Ovarianas/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Proteínas Quinases Associadas com Morte Celular/biossíntese , Proteínas Quinases Associadas com Morte Celular/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Neovascularização Patológica/patologia , Neoplasias Ovarianas/genética , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Cell Signal ; 26(4): 777-83, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412753

RESUMO

High-mobility group box 1 (HMGB1) was shown to be strongly implicated in high incidences of metastasis and the poor clinical pathologic conditions found in various human tumors. In this study, we explored the possible mechanism of HMGB1 in tumor metastases in vitro, using a human carcinoma cell system. BTB, as a negative regulator of cell cycle progression, was identified as a HMGB1 interacting partner. The ectopic expression of HMGB1 activates cell growth by suppressing BTB-induced cell death, decreasing Bax and p53 expression, while enhancing Bcl-xL, Bcl-2, cyclin D1, and NF-κB expression. HMGB1 activates the FAK/PI3K/mTOR signaling cascade, and BTB prominently inhibits HMGB1-induced oncogenesis. The effect of HMGB1 on FAK/mTOR signaling was also confirmed through the silencing of HMGB1 expression. These insights provide evidence that HMGB1 enhances cell proliferation and suppresses apoptosis. Collectively, our results show an underlying mechanism for an HMGB1-associated promotion of carcinoma cells.


Assuntos
Proteína HMGB1/metabolismo , Apoptose , Linhagem Celular , Movimento Celular , Ciclina D1/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/genética , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA