Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(12): e0052822, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35604219

RESUMO

Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivo as well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV. IMPORTANCE Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Interferon-alfa , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Antivirais/farmacologia , Baculoviridae , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Interferon-alfa/farmacologia , Camundongos , Suínos , Vacinas de Produtos Inativados
2.
Virol J ; 16(1): 156, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842907

RESUMO

BACKGROUND: The foot-and-mouth disease (FMD) virus is classified into seven serotypes, of which the South African types have South African Territories (SAT)1, SAT2, and SAT3 that are prevalent in Africa. Especially SAT2 have spread to Arabian Peninsula and the Palestinian Autonomous Territories. Of these viruses, the incidence of SAT2 is the highest. It is important to prepare for the spread of the virus to other continents, even though most FMD viruses are bovine-derived. In particular, due to the high breeding density of pigs in Asia, more attention is usually paid to the immunity and protection of pigs than cattle. For this reason, this study investigated the immunity and protection of pigs against the SAT viruses. METHODS: Specific vaccines were developed for SAT1, SAT2, and SAT3 serotypes. These vaccine viruses were designed to be distinguished from the wild-type strain. An immunogenicity test was conducted using these vaccines in both cattle (n = 5/group) and pigs (n = 20/group). RESULTS: High virus-neutralizing titer of antibodies (> 1:100) was induced in only 2 weeks after the immunization of cattle with the individual vaccine for SAT1, SAT2 or SAT3, and a clear immune response was induced after the second immunization in pigs. When the vaccinated pigs (n = 4-5/group) were challenged by the homologous wild-type virus strain 4 weeks after immunization, all the pigs were protected from the challenge. CONCLUSIONS: This study confirmed that these vaccines can be used against SAT1, SAT2, and SAT3 viruses in cattle and pigs. The vaccine strains developed in this study are expected to be used as vaccines that can protect against FMD in the event of a future FMD outbreak in pigs in consideration of the situation in Asia.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/prevenção & controle , Vírus da Febre Aftosa/classificação , Sorogrupo , Suínos , Resultado do Tratamento , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Marcadoras/administração & dosagem , Vacinas Marcadoras/imunologia
3.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28566375

RESUMO

There are seven antigenically distinct serotypes of foot-and-mouth disease virus (FMDV), each of which has intratypic variants. In the present study, we have developed methods to efficiently generate promising vaccines against seven serotypes or subtypes. The capsid-encoding gene (P1) of the vaccine strain O1/Manisa/Turkey/69 was replaced with the amplified or synthetic genes from the O, A, Asia1, C, SAT1, SAT2, and SAT3 serotypes. Viruses of the seven serotype were rescued successfully. Each chimeric FMDV with a replacement of P1 showed serotype-specific antigenicity and varied in terms of pathogenesis in pigs and mice. Vaccination of pigs with an experimental trivalent vaccine containing the inactivated recombinants based on the main serotypes O, A, and Asia1 effectively protected them from virus challenge. This technology could be a potential strategy for a customized vaccine with challenge tools to protect against epizootic disease caused by specific serotypes or subtypes of FMDV.IMPORTANCE Foot-and-mouth disease (FMD) virus (FMDV) causes significant economic losses. For vaccine preparation, the selection of vaccine strains was complicated by high antigenic variation. In the present study, we suggested an effective strategy to rapidly prepare and evaluate mass-produced customized vaccines against epidemic strains. The P1 gene encoding the structural proteins of the well-known vaccine virus was replaced by the synthetic or amplified genes of viruses of seven representative serotypes. These chimeric viruses generally replicated readily in cell culture and had a particle size similar to that of the original vaccine strain. Their antigenicity mirrored that of the original serotype from which their P1 gene was derived. Animal infection experiments revealed that the recombinants varied in terms of pathogenicity. This strategy will be a useful tool for rapidly generating customized FMD vaccines or challenge viruses for all serotypes, especially for FMD-free countries, which have prohibited the import of FMDVs.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais/imunologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Modelos Animais de Doenças , Febre Aftosa/imunologia , Febre Aftosa/patologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/patogenicidade , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Suínos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/isolamento & purificação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Vacinas Virais/administração & dosagem , Vacinas Virais/isolamento & purificação
4.
J Clin Microbiol ; 54(1): 216-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26560537

RESUMO

During an outbreak of foot-and-mouth disease (FMD), real-time reverse transcription-PCR (rRT-PCR) is the most commonly used diagnostic method to detect viral RNA. However, while this assay is often conducted during the outbreak period, there is an inevitable risk of carryover contamination. This study shows that the carryover contamination can be prevented by the use of target-specific restriction endonuclease in that assay.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Descontaminação/métodos , Contaminação de Equipamentos , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Febre Aftosa/epidemiologia
5.
J Virol ; 89(16): 8267-79, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041279

RESUMO

UNLABELLED: Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE: The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against FMDV, although the virus has associated mechanisms of resistance to type I interferons and siRNAs. We have developed recombinant adenoviruses for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) to enhance the inhibitory effects of these antiviral agents observed in previous studies. Here, we show enhanced antiviral effects against FMDV by combination treatment with Ad-porcine IFN-αγ and Ad-3siRNA to overcome the mechanisms of resistance of FMDV in swine.


Assuntos
Adenoviridae/genética , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/prevenção & controle , Interferon-alfa/genética , Interferon gama/genética , RNA Interferente Pequeno/genética , Recombinação Genética , Doenças dos Suínos/prevenção & controle , Vacinas Virais/administração & dosagem , Virulência , Animais , Vírus da Febre Aftosa/genética , Suínos
6.
Appl Environ Microbiol ; 81(21): 7610-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319879

RESUMO

Three out of five outbreaks of foot-and-mouth disease (FMD) since 2010 in the Republic of Korea have occurred in the winter. At the freezing temperatures, it was impossible to spray disinfectant on the surfaces of vehicles, roads, and farm premises because the disinfectant would be frozen shortly after discharge and the surfaces of the roads or machines would become slippery in cold weather. In this study, we added chemical deicers (ethylene glycol, propylene glycol, sodium chloride, calcium chloride, ethyl alcohol, and commercial windshield washer fluid) to keep disinfectants (0.2% citric acid and 4% sodium carbonate) from freezing, and we tested their virucidal efficacies under simulated cold temperatures in a tube. The 0.2% citric acid could reduce the virus titer 4 logs at -20°C with all the deicers. On the other hand, 4% sodium carbonate showed little virucidal activity at -20°C within 30 min, although it resisted being frozen with the function of the deicers. In conclusion, for the winter season, we may recommend the use of citric acid (>0.2%) diluted in 30% ethyl alcohol or 25% sodium chloride solvent, depending on its purpose.


Assuntos
Carbonatos/metabolismo , Ácido Cítrico/metabolismo , Desinfetantes/metabolismo , Vírus da Febre Aftosa/efeitos dos fármacos , Inativação de Vírus , Temperatura Baixa , Etanol/metabolismo , República da Coreia , Cloreto de Sódio/metabolismo , Fatores de Tempo , Carga Viral
7.
Immunol Invest ; 44(1): 101-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25058651

RESUMO

Since the outbreaks of foot-and-mouth disease (FMD) in South Korea in 2010-2011, a trivalent vaccine has been used as a routine vaccination. Despite the high efficacy of the trivalent vaccine, low antibody formation was reported in the pig industry and there is considerable concern about the ability of the vaccine to protect against the Andong strain responsible for recent outbreaks in South Korea. To overcome these problems, immunostimulators have been widely used to improve vaccine efficacy in South Korea, although without any scientific evidence. Based on the current situation, the aim of this study was to investigate the effects of germanium biotite, a feed supplement used to enhance the immune system, on the immune responses to FMD vaccination through the Andong strain challenge experiment in trivalent vaccinated pigs. Following the challenge, the germanium biotite-fed pigs showed high levels of IL-8 in serum, and increased cellular immune responses to stimulation with the Andong strain antigen compared to nonsupplemented pigs. In addition, higher FMD virus (FMDV) neutralizing antibody titers were detected in the germanium biotite-fed group than in the nonsupplemented group before the challenge. The findings of this study indicate that germanium biotite supplement might enhance immune responses to the FMD vaccine in pigs.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Silicatos de Alumínio/administração & dosagem , Anticorpos Antivirais/sangue , Compostos Ferrosos/administração & dosagem , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Germânio/administração & dosagem , Vacinas Virais/administração & dosagem , Imunidade Adaptativa/efeitos dos fármacos , Silicatos de Alumínio/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/biossíntese , Antígenos Virais/administração & dosagem , Suplementos Nutricionais , Compostos Ferrosos/imunologia , Febre Aftosa/imunologia , Febre Aftosa/virologia , Germânio/imunologia , Interleucina-8/sangue , República da Coreia , Suínos , Vacinação , Vacinas Virais/imunologia
8.
Emerg Infect Dis ; 20(12): 2158-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25417549

RESUMO

Five outbreaks of foot-and-mouth disease have occurred in South Korea during 2000-2011. Macro-analysis of these outbreaks showed a correlation with outbreaks in countries in eastern Asia. Genetic analyses of food-and-mouth disease viruses in South Korea showed a correlation with viruses that are prevalent in neighboring countries.


Assuntos
Doenças Transmissíveis Emergentes , Vírus da Febre Aftosa , Febre Aftosa/epidemiologia , Animais , Sudeste Asiático/epidemiologia , Surtos de Doenças , Ásia Oriental/epidemiologia , Febre Aftosa/história , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/genética , Geografia Médica , História do Século XXI , Humanos , Gado , República da Coreia/epidemiologia , Fatores de Risco
9.
BMC Vet Res ; 10: 179, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25255918

RESUMO

BACKGROUND: After the recent outbreak of foot-and-mouth disease (FMD) in Korea, a vaccination policy has been applied to control the disease. In addition, several non-specific immune stimulators have been used without any scientific evidence that they would enhance the immune response after FMD vaccination and/or protect against FMD. Based on the current situation, the aim of this study was to evaluate the effect of the non-specific immune stimulator germanium biotite on FMD vaccination and immune responses in cattle. To achieve our goal, immune responses to FMD vaccination, such as levels of IgG and IgA, antibody duration, and virus-neutralizing titers were investigated after germanium biotite feeding. The PBMC typing and proliferative response after stimulation with mitogens, the cytokines expression level of PBMC, and the lysozyme activity in the serum were measured to evaluate the immune enhancing effects of germanium biotite following its administration. RESULTS: Following the first vaccination, high level of IgG (at 4 weeks) and IgA (at 2 and 31 weeks) titers in serum and saliva were observed in the germanium biotite-feeding group (p < 0.05). The germanium biotite group also showed high and longstanding inhibition percentage value in ELISA assay at 31 weeks (p < 0.05). Generally, higher virus-neutralizing antibody titers were observed in the feeding group at 20 and 31 weeks after vaccination. Following the feeding germanium biotite, the germanium biotite group showed increased subpopulation of CD4+ lymphocytes and MHC I+II+ cells in PBMCs at 23 week, responding to stimulation of ConA. The levels of IFN-γ (at 3 and 8 weeks), IL-1α (at 3, 11, and 23 weeks), IL-1ß (at 3, 8, and 11 weeks), and IL-4 (at 8 and 11 weeks) gene expression were also significantly increased in the feeding group (p < 0.01 and p < 0.05). Feeding with germanium biotite increased the lymphocytes' proliferative response to the stimulation of ConA and LPS at 23 weeks and lysozyme activity at 9 weeks after feeding. CONCLUSIONS: These results suggest that germanium biotite feeding could increase the protection against FMD virus infection via the induction of higher humoral and cellular immune responses in cattle.


Assuntos
Doenças dos Bovinos/prevenção & controle , Suplementos Nutricionais , Febre Aftosa/prevenção & controle , Germânio/uso terapêutico , Vacinas Virais/imunologia , Ração Animal/análise , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/imunologia , Citocinas/genética , Citocinas/metabolismo , Febre Aftosa/epidemiologia , Regulação da Expressão Gênica/fisiologia , Germânio/administração & dosagem , República da Coreia/epidemiologia , Vacinação/legislação & jurisprudência
10.
Antiviral Res ; 223: 105836, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38360296

RESUMO

Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.


Assuntos
Vírus da Febre Aftosa , Vacinas , Bovinos , Suínos , Animais , Camundongos , Interferon-alfa/farmacologia , Anticorpos Neutralizantes , Imunoglobulina G , Antivirais/farmacologia
11.
Emerg Infect Dis ; 19(4): 655-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23632094
12.
Virus Genes ; 42(2): 208-11, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21161358

RESUMO

To survey for porcine kobuvirus infection, a total of 119 pig fecal samples in Korea were collected from three pig farms with good breeding facilities in three provinces. Forty-three (36.1%) of the fecal samples tested were positive for porcine kobuvirus. In addition, porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) infections were not identified in any of the fecal samples, but porcine group A rotavirus (GAR) infection was identified in 11.8% (14/119) of the samples. Nucleotide sequence analysis showed sharp divergence between the five major Korean lineages by the Neighbor-joining method, and each of these lineages had high levels of bootstrap support (99 or 100%). Porcine kobuvirus is widespread in Korea regardless of the clinical condition (diarrhea or non-diarrhea). Piglets under the age of 3 weeks were the main age group infected with porcine kobuvirus, which is the general case for other species of kobuviruses.


Assuntos
Fezes/virologia , Kobuvirus , Infecções por Picornaviridae/veterinária , Doenças dos Suínos/epidemiologia , Suínos/virologia , Animais , Kobuvirus/genética , Kobuvirus/isolamento & purificação , Filogenia , Infecções por Picornaviridae/epidemiologia , RNA Viral/genética , República da Coreia/epidemiologia , Rotavirus/genética , Rotavirus/isolamento & purificação , Análise de Sequência de RNA
13.
Vaccines (Basel) ; 9(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805012

RESUMO

There are seven viral serotypes of foot-and-mouth disease virus (FMDV): A, O, C, Asia 1, and Southern African Territories 1, 2, and 3 (SAT 1-3). Unlike serotype O FMDV vaccine strains, vaccine strains of serotype A FMDV do not provide broad-range cross-reactivity in serological matching tests with field isolates. Therefore, the topotype/lineage vaccine strain circulating in many countries and a highly immunogenic strain might be advantageous to control serotype A FMDV. We developed a new vaccine strain, A/SKR/Yeoncheon/2017 (A-1), which belongs to the A/ASIA/Sea-97 lineage that frequently occurs in Asian countries. Using virus plaque purification, we selected a vaccine virus with high antigen productivity and the lowest numbers of P1 mutations among cell-adapted virus populations. The A/SKR/Yeoncheon/2017 (A-1) vaccine strain has a single amino acid mutation, VP2 E82K, in the P1 region, and it is perfectly adapted to suspension culture. The A/SKR/Yeoncheon/2017 (A-1) experimental vaccine conferred high immunogenicity in pigs. The vaccine strain was serologically matched with various field isolates in two-dimensional virus neutralization tests using bovine serum. Vaccinated mice were protected against an A/MAY/97 virus that was serologically mismatched with the vaccine strain. Thus, A/SKR/Yeoncheon/2017 (A-1) might be a promising vaccine candidate for protection against the emerging FMDV serotype A in Asia.

14.
Vet Microbiol ; 253: 108975, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418393

RESUMO

The type Asia1 genetic group(G)-V lineage foot-and-mouth disease (FMD) virus was identified in the East-Asian region in 2009. To date, only Shamir has been used as a standard vaccine strain worldwide for type Asia1. To prevent type Asia1 FMD in eastern Asia, two vaccine strains (ASM-R: G-V and ASM-SM: G-V/Shamir fusion) were developed and tested against type Asia1 virus strains. After immunization with the two experimental vaccines, the ASM-SM strain showed a higher level of protection against Shamir virus in mice. Additional immunogenicity tests were carried out in cattle and pigs, revealing sufficient antibody production capable of protecting the animals against the viral challenge. In cattle, the immune response started just 2 weeks after vaccination. Immunogenicity was lower in pigs, but antibody production was greatly increased to a high level after a second vaccination round. In particular, herein, 60 % and 100 % of the vaccinated pigs challenged with the Asia1 Shamir virus were determined to be clinically protected after one and two vaccination rounds with ASM-R, respectively. Pigs vaccinated twice produced sufficient antibody titers with low virus shedding for short time. Moreover, ASM-SM single-vaccinated pigs showed 100 % protection when challenged with the Asia1 Shamir virus. In summary, the vaccine strain ASM-SM designed for the defense of the Asian region efficiently granted protection to pigs against the typical Asia1 virus, Shamir.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Bovinos/prevenção & controle , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/genética , Animais , Anticorpos Antivirais/imunologia , Bovinos , Doenças dos Bovinos/virologia , Ásia Oriental , Feminino , Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos C57BL , Suínos , Doenças dos Suínos/virologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Eliminação de Partículas Virais
15.
NPJ Vaccines ; 6(1): 42, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772029

RESUMO

Current foot-and-mouth disease (FMD) vaccines have significant limitations, including side effects due to oil emulsions at the vaccination site, a narrow spectrum of protective efficacy, and incomplete host defenses mediated by humoral immunity alone. To overcome these limitations, new FMD vaccines must ensure improved safety with non-oil-based adjuvants, a broad spectrum of host defenses within/between serotypes, and the simultaneous induction of cellular and humoral immunity. We designed a novel, immune-potent, recombinant protein rpHSP70-AD that induces robust cellular immunity and elicits a broad spectrum of host defenses against FMD virus (FMDV) infections. We demonstrated that an oil emulsion-free vaccine containing rpHSP70-AD mediates early, mid-term, and long-term immunity and drives potent host protection against FMDV type O and A, suggesting its potential as an FMD vaccine adjuvant in mice and pigs. These results suggest a key strategy for establishing next-generation FMD vaccines, including novel adjuvants.

16.
Vaccine ; 39(12): 1701-1707, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33618945

RESUMO

Two type O commercial vaccines, the O1/Campos and O/Primorsky/2014 vaccines, were studied to evaluate the in vivo efficacy in pigs against heterologous virus challenge with the O/SKR/Jincheon/2014 virus (O/SEA/Mya-98 lineage) isolated in Korea in 2014. The in vivo challenge results indicated that both vaccines induced a high heterologous virus neutralization test (VNT) titer by a single injection and successfully protected specific pathogen-free (SPF) pigs from challenge infection. To determine the optimal vaccination age, a field trial with each vaccine was conducted with three one-shot-vaccinated groups that were injected at 8, 12, or 14 weeks of age and one two-shot-vaccinated group that was injected at 8 and 12 weeks of age in the pig farms. In these field trials, the improved serological performance at 20 and 24 weeks of age expected with vaccination at 12 or 14 weeks of age was not observed, although improved serological results were expected as the result of decreasing interference of maternally derived antibodies (MDAs), as MDAs waned with age. In addition, delayed vaccination resulted in MDA depletion at 14 weeks of age. Therefore, the optimal age for primary vaccination with two different formulated vaccines was 8 weeks old in pigs, considering that MDAs could provide a protective immunity against foot-and-mouth disease (FMD) infection. Prolonged significantly higher VNT titers of immunized pigs were demonstrated in the two-shot-vaccinated groups. In total, the effectiveness of the two vaccines was demonstrated through efficacy tests and field trials in pigs.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Vacinas Virais , Animais , Anticorpos Antivirais , Ásia Oriental , Febre Aftosa/prevenção & controle , República da Coreia , Suínos , Doenças dos Suínos/prevenção & controle , Vacinação
17.
Antiviral Res ; 182: 104920, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828822

RESUMO

Foot-and-mouth disease (FMD) is an economically devastating animal disease. There are seven serotypes, A, O, C, Asia 1, Southern African Territories 1, 2, and 3 (SAT1, SAT2, and SAT3), among which serotype O shows the greatest distribution worldwide. Specifically, the O/ME-SA/Ind-2001 lineage, which was reported in India in 2001, has since emerged worldwide, with the O/ME-SA/Ind-2001d and O/ME-SA/Ind-2001e sublineages recently emerging in North Africa, Middle East Asia, Southeast Asia, and East Asia. The antigenic relationship (r1) value for the O1 Manisa and O/Mya-98 lineage inactivated vaccine against various O/ME-SA/Ind-2001 lineages of FMDV isolates, were matching (r1 > 0.3) or non-matching (r1 < 0.3), indicating that the vaccine based on the O/ME-SA/Ind-2001 lineage FMDV, is valuable. In this study, we developed a new vaccine strain, O/SKR/Boeun/2017 isolate, belonging to the O/ME-SA/Ind-2001e sublineage as an outbreak of this sublineage occurred in 2017 in the Boeun county of the Republic of Korea (O/SKR/Boeun/2017). This experimental vaccine exhibited high immunogenicity in pigs and cattle and was antigenically matched with representative FMDV lineages (ME-SA, O/ME-SA/PanAsia, O/SEA/Mya-98, and O/Cathay) in Asia, as demonstrated by two-dimensional virus neutralization tests (2D-VNT). In addition, a 100% survival rate in C56BL/6 mice vaccinated with 1/15 of a pig dose was observed following challenge with FMDV O/VIT/2013 (O/ME-SA/PanAsia) at 10 days post-vaccination. Further, we analyzed the major antigenic sites of the O/SKR/Boeun/2017 vaccine strain as well as other viruses, by 2D-VNT. These results suggest that the O/ME-SA/Ind-2001e sublineage is a promising vaccine strain candidate in Asia, and other countries, for protection against the emerging FMDV.


Assuntos
Antígenos Virais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Imunogenicidade da Vacina , Vacinas Virais/imunologia , Animais , Bovinos , Linhagem Celular , Cricetinae , Feminino , Febre Aftosa/imunologia , Cabras , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Suínos , Vacinação , Vacinas Virais/administração & dosagem
18.
Viruses ; 12(9)2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927791

RESUMO

Foot-and-mouth disease (FMD) is an economically devastating animal disease. Adapting the field virus to cells is critical to the vaccine production of FMD viruses (FMDV), and heparan sulfate (HS) and Jumonji C-domain-containing protein 6 (JMJD6) are alternative receptors of cell-adapted FMDV. We performed serial passages of FMDV O/SKR/Andong/2010, classified as the O/Mya-98 topotype/lineage and known as a highly virulent strain, to develop a vaccine seed virus. We traced changes in the amino acid sequences of the P1 region, plaque phenotypes, and the receptor usage of the viruses, and then structurally analyzed the mutations. VP3 H56R and D60G mutations were observed in viruses using the HS receptor and led to changes in the hydrogen bonding between VP3 56 and 60. A VP1 P208L mutation was observed in the virus using the JMJD6 receptor during cell adaptation, enabling the interaction with JMJD6 through the formation of a new hydrogen bond with JMJD6 residue 300. Furthermore, VP1 208 was near the VP1 95/96 amino acids, previously reported as critical mutations for JMJD6 receptor interactions. Thus, the mutation at VP1 208 could be critical for cell adaptation related to the JMJD6 receptor and may serve as a basis for mechanism studies on FMDV cell adaptation.


Assuntos
Vírus da Febre Aftosa/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mutação , Receptores Virais/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Cricetinae , Febre Aftosa/virologia , Heparitina Sulfato/metabolismo , Simulação de Acoplamento Molecular , Domínios e Motivos de Interação entre Proteínas , Sorogrupo , Vacinas Virais
19.
Vaccines (Basel) ; 8(2)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481687

RESUMO

Currently available commercial foot-and-mouth disease (FMD) vaccines have various limitations, such as the slow induction and short-term maintenance of antibody titers. Therefore, a novel FMD vaccine that can rapidly induce high neutralizing antibody titers to protect the host in early stages of an FMD virus infection, maintain high antibody titers for long periods after one vaccination dose, and confer full protection against clinical symptoms by simultaneously stimulating cellular and humoral immunity is needed. Here, we developed immunopotent FMD vaccine strains A-3A and A-HSP70, which elicit strong initial cellular immune response and induce humoral immune response, including long-lasting memory response. We purified the antigen (inactivated virus) derived from these immunopotent vaccine strains, and evaluated the immunogenicity and efficacy of the vaccines containing these antigens in mice and pigs. The immunopotent vaccine strains A-3A and A-HSP70 demonstrated superior immunogenicity compared with the A strain (backbone strain) in mice. The oil emulsion-free vaccine containing A-3A and A-HSP70 antigens effectively induced early, mid-term, and long-term immunity in mice and pigs by eliciting robust cellular and humoral immune responses through the activation of co-stimulatory molecules and the secretion of proinflammatory cytokines. We successfully derived an innovative FMD vaccine formulation to create more effective FMD vaccines.

20.
Vaccine ; 38(5): 1120-1128, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31810782

RESUMO

Efforts are required to develop foot-and-mouth disease (FMD) vaccines in Asia that can respond to the type O outbreaks that have continued with the devastating damage since 2010. It is necessary to develop vaccine strains that can provide protection against the ME-SA topotype, which has tended to spread into neighboring areas, and the frequent SEA topotype outbreaks. To this end, this study aimed to develop a FMD vaccine utilizing O PanAsia-2 that is able to provide broad protection against ME-SA as the vaccine strain, with a focus on the O/Jincheon/SKR/2014 virus (SEA topotype), the outbreaks of which have persisted in spite of the enforcement of FMD vaccination. The virus neutralizing antibody (VN) titer to the ME-SA topotype (especially, Ind2001 lineage) virus in pigs was the highest, followed by SEA, while the VN titers to the Cathay and EURO-SA topotypes were similar. In the O/Jincheon/SKR/2014 virus challenge test, all pigs were protected against the virus, and almost no virus shedding was detected after the virus challenge. In the immunization test performed on cattle and pigs, antibodies with sufficient protective activity were produced in cattle two weeks after the first immunization, and pigs exhibited lower immunity compared to cattle. However, immunity was improved enough in pigs to provide protection against the virus challenge after the second immunization, with a significant increase in antibody production.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/imunologia , Imunogenicidade da Vacina , Suínos , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA