Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Plant Microbe Interact ; 33(2): 141-144, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31634040

RESUMO

The rice blast (fungal pathogen: Magnaporthe oryzae and host: Oryza sativa) is one of the most important model pathosystems for understanding plant-microbe interactions. Although both genome sequences were published as the first cases of pathogen and host, only a few in planta transcriptome data during infection are available. Due to technical difficulties, previously reported fungal transcriptome data are not highly qualified to comprehensively profile the expression of fungal genes during infection. Here, we report the high-quality transcriptomes of M. oryzae and rice during infection using a sheath infection-based RNA sequencing approach. This comprehensive expression profiling of the fungal pathogen and its host will provide a better platform for understanding the plant-microbe interactions at the genomic level and serve as a valuable resource for the research community.


Assuntos
Perfilação da Expressão Gênica , Magnaporthe , Oryza , Interações Hospedeiro-Patógeno/genética , Magnaporthe/genética , Oryza/genética , Doenças das Plantas/microbiologia , Análise de Sequência de RNA
2.
Biochem Biophys Res Commun ; 448(1): 70-5, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24780396

RESUMO

Plant innate immunity is mediated by pattern recognition receptors (PRRs) and intracellular NB-LRR (nucleotide-binding domain and leucine-rich repeat) proteins. Overexpression of the endoplasmic reticulum (ER) chaperone, luminal-binding protein 3 (BiP3) compromises resistance to Xanthomonas oryzae pv. oryzae (Xoo) mediated by the rice PRR XA21 [12]. Here we show that BiP3 overexpression also compromises resistance mediated by rice XA3, a PRR that provides broad-spectrum resistance to Xoo. In contrast, BiP3 overexpression has no effect on resistance mediated by rice Pi5, an NB-LRR protein that confers resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae). Our results suggest that rice BiP3 regulates membrane-resident PRR-mediated immunity.


Assuntos
Chaperonas Moleculares/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Reconhecimento de Padrão/fisiologia , Retículo Endoplasmático/fisiologia , Chaperonas Moleculares/genética , Oryza/genética , Oryza/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Receptores Proteína Tirosina Quinases/genética , Receptores de Reconhecimento de Padrão/genética , Xanthomonas/patogenicidade
3.
Plant J ; 71(1): 135-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22381007

RESUMO

To cope with a lifetime of exposure to a variety of pathogens, plants have developed exquisite and refined defense mechanisms that vary depending on the type of attacking pathogen. Defense-associated transcriptional reprogramming is a central part of plant defense mechanisms. Chromatin modification has recently been shown to be another layer of regulation for plant defense mechanisms. Here, we show that the RPD3/HDA1-class histone deacetylase HDA19 is involved in the repression of salicylic acid (SA)-mediated defense responses in Arabidopsis. Loss of HDA19 activity increased SA content and increased the expression of a group of genes required for accumulation of SA as well as pathogenesis related (PR) genes, resulting in enhanced resistance to Pseudomonas syringae. We found that HDA19 directly associates with and deacetylates histones at the PR1 and PR2 promoters. Thus, our study shows that HDA19, by modifying chromatin to a repressive state, ensures low basal expression of defense genes, such as PR1, under unchallenged conditions, as well as their proper induction without overstimulation during defense responses to pathogen attacks. Thus, the role of HDA19 might be critical in preventing unnecessary activation and self-destructive overstimulation of defense responses, allowing successful growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Histona Desacetilases/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Mutagênese Insercional , Regiões Promotoras Genéticas , Pseudomonas syringae/patogenicidade , Transdução de Sinais
4.
Plant Commun ; 3(6): 100415, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35918895

RESUMO

Plants possess effective immune systems that defend against most microbial attackers. Recent plant immunity research has focused on the classic binary defense model involving the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our current understanding comes from studies that relied on information derived from a limited number of pathosystems, newer studies concerning the incredibly diverse interactions between plants and microbes are providing additional insights into other novel mechanisms. Here, we review the roles of both classical and more recently identified components of defense signaling pathways and stress hormones in regulating the ambivalence effect during responses to diverse pathogens. Because of their different lifestyles, effective defense against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Given these opposing forces, the plant potentially faces a trade-off when it mounts resistance to a specific pathogen, a phenomenon referred to here as the ambivalence effect. We also highlight a novel mechanism by which translational control of the proteins involved in the ambivalence effect can be used to engineer durable and broad-spectrum disease resistance, regardless of the lifestyle of the invading pathogen.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Plantas/metabolismo , Hormônios/metabolismo
5.
Mol Plant Pathol ; 23(3): 400-416, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34839574

RESUMO

Because pathogens use diverse infection strategies, plants cannot use one-size-fits-all defence and modulate defence responses based on the nature of pathogens and pathogenicity mechanism. Here, we report that a rice glycoside hydrolase (GH) plays contrasting roles in defence depending on whether a pathogen is hemibiotrophic or necrotrophic. The Arabidopsis thaliana MORE1 (Magnaporthe oryzae resistance 1) gene, encoding a member of the GH10 family, is needed for resistance against M. oryzae and Alternaria brassicicola, a fungal pathogen infecting A. thaliana as a necrotroph. Among 13 rice genes homologous to MORE1, 11 genes were induced during the biotrophic or necrotrophic stage of infection by M. oryzae. CRISPR/Cas9-assisted disruption of one of them (OsMORE1a) enhanced resistance against hemibiotrophic pathogens M. oryzae and Xanthomonas oryzae pv. oryzae but increased susceptibility to Cochliobolus miyabeanus, a necrotrophic fungus, suggesting that OsMORE1a acts as a double-edged sword depending on the mode of infection (hemibiotrophic vs. necrotrophic). We characterized molecular and cellular changes caused by the loss of MORE1 and OsMORE1a to understand how these genes participate in modulating defence responses. Although the underlying mechanism of action remains unknown, both genes appear to affect the expression of many defence-related genes. Expression patterns of the GH10 family genes in A. thaliana and rice suggest that other members also participate in pathogen defence.


Assuntos
Arabidopsis , Magnaporthe , Oryza , Xanthomonas , Arabidopsis/microbiologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Hidrolases/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
6.
Nat Commun ; 11(1): 5845, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203871

RESUMO

Pathogens utilize multiple types of effectors to modulate plant immunity. Although many apoplastic and cytoplasmic effectors have been reported, nuclear effectors have not been well characterized in fungal pathogens. Here, we characterize two nuclear effectors of the rice blast pathogen Magnaporthe oryzae. Both nuclear effectors are secreted via the biotrophic interfacial complex, translocated into the nuclei of initially penetrated and surrounding cells, and reprogram the expression of immunity-associated genes by binding on effector binding elements in rice. Their expression in transgenic rice causes ambivalent immunity: increased susceptibility to M. oryzae and Xanthomonas oryzae pv. oryzae, hemibiotrophic pathogens, but enhanced resistance to Cochliobolus miyabeanus, a necrotrophic pathogen. Our findings help remedy a significant knowledge deficiency in the mechanism of M. oryzae-rice interactions and underscore how effector-mediated manipulation of plant immunity by one pathogen may also affect the disease severity by other pathogens.


Assuntos
Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Sítios de Ligação , Bipolaris/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Oryza/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Virulência , Xanthomonas/patogenicidade
7.
Mol Cells ; 42(9): 637-645, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31564075

RESUMO

Effector-triggered immunity (ETI) is an effective layer of plant defense initiated upon recognition of avirulence (Avr) effectors from pathogens by cognate plant disease resistance (R) proteins. In rice, a large number of R genes have been characterized from various cultivars and have greatly contributed to breeding programs to improve resistance against the rice blast pathogen Magnaporthe oryzae. The extreme diversity of R gene repertoires is thought to be a result of co-evolutionary history between rice and its pathogens including M. oryzae. Here we show that Pii is an allele of Pi5 by DNA sequence characterization and complementation analysis. Pii-1 and Pii-2 cDNAs were cloned by reverse transcription polymerase chain reaction from the Pii -carrying cultivar Fujisaka5 . The complementation test in susceptible rice cultivar Dongjin demonstrated that the rice blast resistance mediated by Pii , similar to Pi5 , requires the presence of two nucleotide-binding leucine-rich repeat genes, Pii-1 and Pii-2 . Consistent with our hypothesis that Pi5 and Pii are functionally indistinguishable, the replacement of Pii-1 by Pi5-1 and Pii-2 by Pi5-2 , respectively, does not change the level of disease resistance to M. oryzae carrying AVR-Pii. Surprisingly, Exo70F3, required for Pii-mediated resistance, is dispensable for Pi5-mediated resistance. Based on our results, despite similarities observed between Pi5 and Pii, we hypothesize that Pi5 and Pii pairs require partially distinct mechanisms to function.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Magnaporthe/fisiologia , Proteínas NLR/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sequência de Bases , Sistemas CRISPR-Cas/genética , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/genética , Plantas Geneticamente Modificadas
8.
Front Plant Sci ; 9: 577, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868050

RESUMO

Many scientific findings have been reported on the beneficial function of reactive oxygen species (ROS) in various cellular processes, showing that they are not just toxic byproducts. The double-edged role of ROS shows the importance of the regulation of ROS level. We report a gene, rrsRLK (required for ROS-scavenging receptor-like kinase), that encodes a cytoplasmic RLK belonging to the non-RD kinase family. The gene was identified by screening rice RLK mutant lines infected with Xanthomonas oryzae pv. oryzae (Xoo), an agent of bacterial leaf blight of rice. The mutant (ΔrrsRLK) lacking the Os01g02290 gene was strongly resistant to many Xoo strains, but not to the fungal pathogen Magnaporthe grisea. ΔrrsRLK showed significantly higher expression of OsPR1a, OsPR1b, OsLOX, RBBTI4, and jasmonic acid-related genes than wild type. We showed that rrsRLK protein interacts with OsVOZ1 (vascular one zinc-finger 1) and OsPEX11 (peroxisomal biogenesis factor 11). In the further experiments, abnormal biogenesis of peroxisomes, hydrogen peroxide (H2O2) accumulation, and reduction of activity of ROS-scavenging enzymes were investigated in ΔrrsRLK. These results suggest that the enhanced resistance in ΔrrsRLK is due to H2O2 accumulation caused by irregular ROS-scavenging mechanism, and rrsRLK is most likely a key regulator required for ROS homeostasis in rice.

9.
Front Plant Sci ; 8: 2220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375598

RESUMO

WRKY proteins play important roles in transcriptional reprogramming in plants in response to various stresses including pathogen attack. In this study, we functionally characterized a rice WRKY gene, OsWRKY67, whose expression is upregulated against pathogen challenges. Activation of OsWRKY67 by T-DNA tagging significantly improved the resistance against two rice pathogens, Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo). Reactive oxygen species (ROS) rapidly accumulated in OsWRKY67 activation mutant lines in response to elicitor treatment, compared with the controls. Overexpression of OsWRKY67 in rice confirmed enhanced disease resistance, but led to a restriction of plant growth in transgenic lines with high levels of OsWRKY67 protein. OsWRKY67 RNAi lines significantly reduced resistance to M. oryzae and Xoo isolates tested, and abolished XA21-mediated resistance, implying the possibility of broad-spectrum resistance from OsWRKY67. Transcriptional activity and subcellular localization assays indicated that OsWRKY67 is present in the nucleus where it functions as a transcriptional activator. Quantitative PCR revealed that the pathogenesis-related genes, PR1a, PR1b, PR4, PR10a, and PR10b, are upregulated in OsWRKY67 overexpression lines. Therefore, these results suggest that OsWRKY67 positively regulates basal and XA21-mediated resistance, and is a promising candidate for genetic improvement of disease resistance in rice.

10.
Mol Cells ; 37(7): 532-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25081037

RESUMO

We isolated a rice (Oryza sativa L.) WRKY gene which is highly upregulated in senescent leaves, denoted OsWRKY42. Analysis of OsWRKY42-GFP expression and its effects on transcriptional activation in maize protoplasts suggested that the OsWRKY42 protein functions as a nuclear transcriptional repressor. OsWRKY42-overexpressing (OsWR KY42OX) transgenic rice plants exhibited an early leaf senescence phenotype with accumulation of the reactive oxygen species (ROS) hydrogen peroxide and a reduced chlorophyll content. Expression analysis of ROS producing and scavenging genes revealed that the metallothionein genes clustered on chromosome 12, especially OsMT1d, were strongly repressed in OsWRKY42OX plants. An OsMT1d promoter:LUC construct was found to be repressed by OsWRKY42 overexpression in rice protoplasts. Finally, chromatin immunoprecipitation analysis demonstrated that OsWRKY42 binds to the W-box of the OsMT1d promoter. Our results thus suggest that OsWRKY42 represses OsMT1d-mediated ROS scavenging and thereby promotes leaf senescence in rice.


Assuntos
Senescência Celular , Metalotioneína/metabolismo , Oryza , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Células Cultivadas , Senescência Celular/genética , Clorofila/metabolismo , Imunoprecipitação da Cromatina , Sequestradores de Radicais Livres/metabolismo , Regulação da Expressão Gênica de Plantas , Metalotioneína/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética
11.
PLoS One ; 8(9): e73346, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019919

RESUMO

Xanthomonasoryzae pv. oryzae (Xoo) is spread systemically through the xylem tissue and causes bacterial blight in rice. We evaluated the roles of Xanthomonas outer proteins (Xop) in the Xoo strain KXO85 in a Japonica-type rice cultivar, Dongjin. Five xop gene knockout mutants (xopQ KXO85 , xopX KXO85 , xopP1 KXO85 , xopP2 KXO85 , and xopN KXO85 ) were generated by EZ-Tn5 mutagenesis, and their virulence was assessed in 3-month-old rice leaves. Among these mutants, the xopN KXO85 mutant appeared to be less virulent than the wild-type KXO85; however, the difference was not statistically significant. In contrast, the xopN KXO85 mutant exhibited significantly less virulence in flag leaves after flowering than the wild-type KXO85. These observations indicate that the roles of Xop in Xoo virulence are dependent on leaf stage. We chose the xopN gene for further characterization because the xopN KXO85 mutant showed the greatest influence on virulence. We confirmed that XopNKXO85 is translocated into rice cells, and its gene expression is positively regulated by HrpX. Two rice proteins, OsVOZ2 and a putative thiamine synthase (OsXNP), were identified as targets of XopNKXO85 by yeast two-hybrid screening. Interactions between XopNKXO85 and OsVOZ2 and OsXNP were further confirmed in planta by bimolecular fluorescence complementation and in vivo pull-down assays. To investigate the roles of OsVOZ2 in interactions between rice and Xoo, we evaluated the virulence of the wild-type KXO85 and xopN KXO85 mutant in the OsVOZ2 mutant line PFG_3A-07565 of Dongjin. The wild-type KXO85 and xopN KXO85 mutant were significantly less virulent in the mutant rice line. These results indicate that XopNKXO85 and OsVOZ2 play important roles both individually and together for Xoo virulence in rice.


Assuntos
Interações Hospedeiro-Patógeno , Ligases/metabolismo , Oryza/microbiologia , Tiamina/metabolismo , Xanthomonas/patogenicidade , Técnicas do Sistema de Duplo-Híbrido , Xanthomonas/enzimologia
12.
Mol Cells ; 35(4): 327-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23563801

RESUMO

The required for Mla12 resistance (RAR1) protein is essential for the plant immune response. In rice, a model monocot species, the function of Oryza sativa RAR1 (OsRAR1) has been little explored. In our current study, we characterized the response of a rice osrar1 T-DNA insertion mutant to infection by Magnaporthe oryzae, the causal agent of rice blast disease. osrar1 mutants displayed reduced resistance compared with wild type rice when inoculated with the normally virulent M. oryzae isolate PO6-6, indicating that OsRAR1 is required for an immune response to this pathogen. We also investigated the function of OsRAR1 in the resistance mechanism mediated by the immune receptor genes Pib and Pi5 that encode nucleotide binding-leucine rich repeat (NB-LRR) proteins. We inoculated progeny from Pib/osrar1 and Pi5/osrar1 heterozygous plants with the avirulent M. oryzae isolates, race 007 and PO6-6, respectively. We found that only Pib-mediated resistance was compromised by the osrar1 mutation and that the introduction of the OsRAR1 cDNA into Pib/osrar1 rescued Pib-mediated resistance. These results indicate that OsRAR1 is required for Pib-mediated resistance but not Pi5-mediated resistance to M. oryzae.


Assuntos
Magnaporthe/imunologia , Oryza/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Magnaporthe/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética
13.
Mol Cells ; 31(6): 553-61, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21533550

RESUMO

Systematic searches using the complete genome sequence of rice (Oryza sativa) identified OsSUS7, a new member of the rice sucrose synthase (OsSUS) gene family, which shows only nine single nucleotide substitutions in the OsSUS5 coding sequence. Comparative genomic analysis revealed that the synteny between OsSUS5 and OsSUS7 is conserved, and that significant numbers of transposable elements are scattered at both loci. In particular, a 17.6-kb genomic region containing transposable elements was identified in the 5' upstream sequence of the OsSUS7 gene. GFP fusion experiments indicated that OsSUS5 and OsSUS7 are largely associated with the plasma membrane and partly with the cytosol in maize mesophyll protoplasts. RT-PCR analysis and transient expression assays revealed that OsSUS5 and OsSUS7 exhibit similar expression patterns in rice tissues, with the highest expression evident in roots. These results suggest that two redundant genes, OsSUS5 and OsSUS7, evolved via duplication of a chromosome region and through the transposition of transposable elements.


Assuntos
Glucosiltransferases/genética , Proteínas de Membrana/genética , Oryza/genética , Proteínas de Plantas/genética , Sementes/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Clonagem Molecular , Elementos de DNA Transponíveis , Componentes do Gene , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Glucosiltransferases/metabolismo , Luciferases/biossíntese , Luciferases/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA