Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457084

RESUMO

The limited capability of regeneration in the human central nervous system leads to severe and permanent disabilities following spinal cord injury (SCI) while patients suffer from no viable treatment option. Adult human neural stem cells (ahNSCs) are unique cells derived from the adult human brain, which have the essential characteristics of NSCs. The objective of this study was to characterize the therapeutic effects of ahNSCs isolated from the temporal lobes of focal cortical dysplasia type IIIa for SCI and to elucidate their treatment mechanisms. Results showed that the recovery of motor functions was significantly improved in groups transplanted with ahNSCs, where, in damaged regions of spinal cords, the numbers of both spread and regenerated nerve fibers were observed to be higher than the vehicle group. In addition, the distance between neuronal nuclei in damaged spinal cord tissue was significantly closer in treatment groups than the vehicle group. Based on an immunohistochemistry analysis, those neuroprotective effects of ahNSCs in SCI were found to be mediated by inhibiting apoptosis of spinal cord neurons. Moreover, the analysis of the conditioned medium (CM) of ahNSCs revealed that such neuroprotective effects were mediated by paracrine effects with various types of cytokines released from ahNSCs, where monocyte chemoattractant protein-1 (MCP-1, also known as CCL2) was identified as a key paracrine mediator. These results of ahNSCs could be utilized further in the preclinical and clinical development of effective and safe cell therapeutics for SCI, with no available therapeutic options at present.


Assuntos
Células-Tronco Neurais , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Adulto , Quimiocina CCL2 , Humanos , Células-Tronco Neurais/transplante , Fármacos Neuroprotetores/uso terapêutico , Recuperação de Função Fisiológica/fisiologia , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
2.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806636

RESUMO

Stem cell-based therapeutics are amongst the most promising next-generation therapeutic approaches for the treatment of spinal cord injury (SCI), as they may promote the repair or regeneration of damaged spinal cord tissues. However, preclinical optimization should be performed before clinical application to guarantee safety and therapeutic effect. Here, we investigated the optimal injection route and dose for adult human multipotent neural cells (ahMNCs) from patients with hemorrhagic stroke using an SCI animal model. ahMNCs demonstrate several characteristics associated with neural stem cells (NSCs), including the expression of NSC-specific markers, self-renewal, and multi neural cell lineage differentiation potential. When ahMNCs were transplanted into the lateral ventricle of the SCI animal model, they specifically migrated within 24 h of injection to the damaged spinal cord, where they survived for at least 5 weeks after injection. Although ahMNC transplantation promoted significant locomotor recovery, the injection dose was shown to influence treatment outcomes, with a 1 × 106 (medium) dose of ahMNCs producing significantly better functional recovery than a 3 × 105 (low) dose. There was no significant gain in effect with the 3 × 106 ahMNCs dose. Histological analysis suggested that ahMNCs exert their effects by modulating glial scar formation, neuroprotection, and/or angiogenesis. These data indicate that ahMNCs from patients with hemorrhagic stroke could be used to develop stem cell therapies for SCI and that the indirect injection route could be clinically relevant. Moreover, the optimal transplantation dose of ahMNCs defined in this preclinical study might be helpful in calculating its optimal injection dose for patients with SCI in the future.


Assuntos
Células-Tronco Multipotentes/patologia , Células-Tronco Neurais/patologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Adulto , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco/métodos
3.
J Biol Chem ; 294(42): 15435-15445, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31471318

RESUMO

Akt signaling is an important regulator of neural development, but the distinctive function of Akt isoforms in brain development presents a challenge. Here we show Siah1 as an ubiquitin ligase that preferentially interacts with Akt3 and facilitates ubiquitination and degradation of Akt3. Akt3 is enriched in the axonal shaft and branches but not growth cone tips, where Siah1 is prominently present. Depletion of Siah1 enhanced Akt3 levels in the soma and axonal tips, eliciting multiple branching. Brain-specific somatic mutation in Akt3-E17K escapes from Siah1-mediated degradation and causes improper neural development with dysmorphic neurons. Remarkably, coexpression of Siah1 with Akt3-WT restricted disorganization of neural development is caused by Akt3 overexpression, whereas forced expression of Siah1 with the Akt3-E17K mutant fails to cope with malformation of neural development. These findings demonstrate that Siah1 limits Akt3 turnover during brain development and that this event is essential for normal organization of the neural network.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Camundongos , Neurogênese , Neurônios/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Proc Natl Acad Sci U S A ; 114(31): 8366-8371, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716909

RESUMO

CD44 has been postulated as a cell surface coreceptor for augmenting receptor tyrosine kinase (RTK) signaling. However, how exactly CD44 triggers RTK-dependent signaling remained largely unclear. Here we report an unexpected mechanism by which the CD44s splice isoform is internalized into endosomes to attenuate EGFR degradation. We identify a CD44s-interacting small GTPase, Rab7A, and show that CD44s inhibits Rab7A-mediated EGFR trafficking to lysosomes and subsequent degradation. Importantly, CD44s levels correlate with EGFR signature and predict poor prognosis in glioblastomas. Because Rab7A facilitates trafficking of many RTKs to lysosomes, our findings identify CD44s as a Rab7A regulator to attenuate RTK degradation.


Assuntos
Endossomos/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/patologia , Receptores de Hialuronatos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular , Receptores ErbB/antagonistas & inibidores , Glioblastoma/genética , Células HEK293 , Humanos , Receptores de Hialuronatos/genética , Lisossomos/metabolismo , Isoformas de Proteínas/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Transdução de Sinais/genética , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , proteínas de unión al GTP Rab7
5.
Mol Carcinog ; 54(11): 1283-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154617

RESUMO

The long isoform of ErbB3 binding protein 1 (Ebp1), p48, strongly promotes tumorigenesis of glioblastoma, accelerating cell proliferation and transformation, while the short isoform, p42, which lacks the N-terminal 54 amino acids, inhibits tumor growth. However, it is unclear if the N-terminal domain of p48 regulates the oncogenic function of p48. Here, we show that p48, but not p42, interacts with cyclin-dependent kinase 2 (CDK2) through its N-terminal domain, resulting in the specific phosphorylation of serine 34 of p48. Overexpression of wild-type p48 greatly enhanced tumor cell growth, whereas phospho-ablated mutant S34A of p48, which is mutated at the CDK2 phosphorylation site, antagonizes cell proliferation and transformation. Moreover, phospho-ablated mutant S34A abrogated the ability of p48 to accelerate tumor cell growth in a mouse engraft model. Thus, our findings indicate that p48Ebp1 acts as an oncoprotein through selective interaction and/or modification of the N-terminal domain that does not exist in its short isoform p42.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Quinase 2 Dependente de Ciclina/genética , Fosforilação/genética , Estrutura Terciária de Proteína/genética , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Células HeLa , Humanos , Camundongos , Camundongos Nus , Isoformas de Proteínas/genética , Transformação Genética/genética
6.
Mol Ther ; 21(11): 2063-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23883863

RESUMO

Current research has evaluated the intrinsic tumor-tropic properties of stem cell carriers for targeted anticancer therapy. Our laboratory has been extensively studying in the preclinical setting, the role of neural stem cells (NSCs) as delivery vehicles of CRAd-S-pk7, a gliomatropic oncolytic adenovirus (OV). However, the mediated toxicity of therapeutic payloads, such as oncolytic adenoviruses, toward cell carriers has significantly limited this targeted delivery approach. Following this rationale, in this study, we assessed the role of a novel antioxidant thiol, N-acetylcysteine amide (NACA), to prevent OV-mediated toxicity toward NSC carriers in an orthotropic glioma xenograft mouse model. Our results show that the combination of NACA and CRAd-S-pk7 not only increases the viability of these cell carriers by preventing reactive oxygen species (ROS)-induced apoptosis of NSCs, but also improves the production of viral progeny in HB1.F3.CD NSCs. In an intracranial xenograft mouse model, the combination treatment of NACA and NSCs loaded with CRAd-S-pk7 showed enhanced CRAd-S-pk7 production and distribution in malignant tissues, which improves the therapeutic efficacy of NSC-based targeted antiglioma oncolytic virotherapy. These data demonstrate that the combination of NACA and NSCs loaded with CRAd-S-pk7 may be a desirable strategy to improve the therapeutic efficacy of antiglioma oncolytic virotherapy.


Assuntos
Acetilcisteína/análogos & derivados , Adenoviridae/efeitos dos fármacos , Glioma/terapia , Células-Tronco Neurais/transplante , Terapia Viral Oncolítica/métodos , Acetilcisteína/farmacologia , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Glioma/patologia , Camundongos , Camundongos Nus , Terapia de Alvo Molecular/métodos , Neoplasias Experimentais , Vírus Oncolíticos/efeitos dos fármacos , Vírus Oncolíticos/genética , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Stem Cells Dev ; 33(3-4): 89-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38164089

RESUMO

Mesenchymal stem cells (MSCs) directly differentiate into neurons and endothelial cells after transplantation, and their secretome has considerable potential for treating brain injuries. Previous studies have suggested that the effects of MSCs priming with exposure to hypoxia, cytokines, growth factors, or chemical agents could optimize the paracrine potency and therapeutic potential of MSCs. Studies have suggested that thrombin-primed Wharton's Jelly-derived mesenchymal stem cells (Th.WJ-MSCs) significantly enhance the neuroprotective beneficial effects of naive MSCs in brain injury such as hypoxic-ischemic brain injury (HIE) and intraventricular hemorrhage (IVH). This study aimed to characterize WJ-MSCs in terms of stem cell markers, differentiation, cell proliferation, and paracrine factors by comparing naive and Th.WJ-MSCs. We demonstrated that compared with naive MSCs, Th.MSCs significantly enhanced the neuroprotective effects in vitro. Moreover, we identified differentially expressed proteins in the conditioned media of naive and Th.WJ-MSCs by liquid chromatography-tandem mass spectrometry analysis. Secretome analysis of the conditioned medium of WJ-MSCs revealed that such neuroprotective effects were mediated by paracrine effects with secretomes of Th.WJ-MSCs, and hepatocyte growth factor was identified as a key paracrine mediator. These results can be applied further in the preclinical and clinical development of effective and safe cell therapeutics for brain injuries such as HIE and IVH.


Assuntos
Lesões Encefálicas , Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Fator de Transcrição STAT3 , Geleia de Wharton , Humanos , Fator de Crescimento de Hepatócito/metabolismo , Fármacos Neuroprotetores/farmacologia , Trombina/farmacologia , Trombina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Transdução de Sinais , Diferenciação Celular , Fatores Imunológicos/metabolismo , Lesões Encefálicas/metabolismo , Proliferação de Células
8.
Exp Cell Res ; 318(2): 136-43, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21930127

RESUMO

p48 is a long isoform of the ErbB3 binding protein that has oncogenic functions including promotion of carcinogenesis and induction of malignant transformation through negative regulation of tumor suppressor p53. Here, we show that high level of p48 protein expression leads to enhance HDM2 phosphorylation by Akt and inhibits the self-ubiquitination of HDM2 by up-regulation of Akt activity, thereby promoting its protein stability. Moreover, p48 expression leads to accumulated nuclear localization of HDM2, whereas p48 depletion disturbs its nuclear localization. Hence, higher expression of p48 in cancer cells reduces p53 levels through modulation of HDM2 nuclear localization and protein stability via regulation of its Akt-mediated phosphorylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Núcleo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Fosforilação , Isoformas de Proteínas/metabolismo , Ubiquitinação , Regulação para Cima
9.
Exp Cell Res ; 317(7): 966-75, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21182834

RESUMO

The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survival and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.


Assuntos
Transformação Celular Neoplásica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proliferação de Células , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Nucleares/genética , Nucleofosmina , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
BMB Rep ; 55(7): 336-341, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35168701

RESUMO

Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments. [BMB Reports 2022; 55(7): 336-341].


Assuntos
Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/terapia , Transplante de Células-Tronco
11.
BMB Rep ; 55(10): 512-517, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36104258

RESUMO

Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100ß, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1ß. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.[BMB Reports 2022; 55(10): 506-511].


Assuntos
Lesões Encefálicas Traumáticas , Ratos , Animais , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Biomarcadores , Citocinas/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças
12.
Aging (Albany NY) ; 14(22): 8944-8969, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446389

RESUMO

Mismatches between pre-clinical and clinical results of stem cell therapeutics for ischemic stroke limit their clinical applicability. To overcome these discrepancies, precise planning of pre-clinical experiments that can be translated to clinical trials and the scientific elucidation of treatment mechanisms is important. In this study, adult human neural stem cells (ahNSCs) derived from temporal lobe surgical samples were used (to avoid ethical and safety issues), and their therapeutic effects on ischemic stroke were examined using middle cerebral artery occlusion animal models. 5 × 105 ahNSCs was directly injected into the lateral ventricle of contralateral brain hemispheres of immune suppressed rat stroke models at the subacute phase of stroke. Compared with the mock-treated group, ahNSCs reduced brain tissue atrophy and neurological sensorimotor and memory functional loss. Tissue analysis demonstrated that the significant therapeutic effects were mediated by the neuroprotective and pro-angiogenic activities of ahNSCs, which preserved neurons in ischemic brain areas and decreased reactive astrogliosis and microglial activation. The neuroprotective and pro-angiogenic effects of ahNSCs were validated in in vitro stroke models and were induced by paracrine factors excreted by ahNSCs. When the JAK2/STAT3 signaling pathway was inhibited by a specific inhibitor, AG490, the paracrine neuroprotective and pro-angiogenic effects of ahNSCs were reversed. This pre-clinical study that closely simulated clinical settings and provided treatment mechanisms of ahNSCs for ischemic stroke may aid the development of protocols for subsequent clinical trials of ahNSCs and the realization of clinically available stem cell therapeutics for ischemic stroke.


Assuntos
AVC Isquêmico , Células-Tronco Neurais , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Humanos , Ratos , Indutores da Angiogênese , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/terapia , Janus Quinase 2/metabolismo , Modelos Animais , Células-Tronco Neurais/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
13.
Stem Cells Int ; 2021: 6737288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434240

RESUMO

Adult human multipotent neural cells (ahMNCs) are unique cells derived from adult human temporal lobes. They show multipotent differentiation potentials into neurons and astrocytes. In addition, they possess proangiogenic capacities. The objective of this study was to characterize ahMNCs in terms of expression of cell type-specific markers, in vitro differentiation potentials, and paracrine factors compared with several other cell types including fetal neural stem cells (fNSCs) to provide detailed molecular and functional features of ahMNCs. Interestingly, the expression of cell type-specific markers of ahMNCs could not be differentiated from those of pericytes, mesenchymal stem cells (MSCs), or fNSCs. In contrast, differentiation potentials of ahMNCs and fNSCs into neural cells were higher than those of other cell types. Compared with MSCs, ahMNCs showed lower differentiation capacities into osteogenic and adipogenic cells. Moreover, ahMNCs uniquely expressed higher levels of MCP-1 and GRO family paracrine factors than fNSCs and MSCs. These high levels of MCP-1 and GRO family mediated in vivo proangiogenic effects of ahMNCs. These results indicate that ahMNCs have their own distinct characteristics that could distinguish ahMNCs from other cell types. Characteristics of ahMNCs could be utilized further in the preclinical and clinical development of ahMNCs for regenerative medicine. They could also be used as experimental references for other cell types including fNSCs.

14.
Anticancer Res ; 41(7): 3349-3361, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230131

RESUMO

BACKGROUND/AIM: The present study investigated the oncogenic functions of TACC3 in the progression of gastric cancer (GC). MATERIALS AND METHODS: We analysed TACC3 in relation to cell growth, invasion capability, expression of epithelial-mesenchymal transition (EMT)-related markers, and ERK/Akt/cyclin D1 signaling factors. The correlation between the immunohistochemically confirmed expression of TACC3 and clinical factors was also analyzed. RESULTS: The increased proliferation and invasion of TACC3-over-expressing GC cells was accompanied by altered regulation of EMT-associated markers and activation of ERK/Akt/cyclin D1 signaling. Immunohistochemical analysis of TACC3 in human GC tissues revealed that its expression is correlated with aggressive characteristics and poor prognosis of intestinal-type GC. CONCLUSION: TACC3 contributes to gastric tumorigenesis by promoting EMT via the ERK/Akt/cyclin D1 signaling pathway. The correlation between TACC3 expression and multiple clinicopathological variables implies that its effective therapeutic targeting in GC will depend on the tumor subtype.


Assuntos
Carcinogênese/genética , Ciclina D1/genética , Transição Epitelial-Mesenquimal/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gástricas/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais/genética , Estômago/patologia , Neoplasias Gástricas/patologia
15.
BMB Rep ; 53(10): 539-544, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32843132

RESUMO

Skin aging appears to be the result of overlapping intrinsic (including genetic and hormonal factors) and extrinsic (external environment including chronic light exposure, chemicals, and toxins) processes. These factors cause decreases in the synthesis of collagen type I and elastin in fibroblasts and increases in the melanin in melanocytes. Collagen Type I is the most abundant type of collagen and is a major structural protein in human body tissues. In previous studies, many products containing collagen derived from land and marine animals as well as other sources have been used for a wide range of purposes in cosmetics and food. However, to our knowledge, the effects of human collagenderived peptides on improvements in skin condition have not been investigated. Here we isolate and identify the domain of a human COL1A2-derived protein which promotes fibroblast cell proliferation and collagen type I synthesis. This human COL 1A2-derived peptide enhances wound healing and elastin production. Finally, the human collagen alpha-2 type I-derived peptide (SMM) ameliorates collagen type I synthesis, cell proliferation, cell migration, and elastin synthesis, supporting a significant anti-wrinkle effect. Collectively, these results demonstrate that human collagen alpha-2 type I-derived peptides is practically accessible in both cosmetics and food, with the goal of improving skin condition. [BMB Reports 2020; 53(10): 539-544].


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Pele/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Colágeno/metabolismo , Colágeno Tipo I/fisiologia , Elastina/biossíntese , Elastina/metabolismo , Elastina/farmacologia , Humanos , Envelhecimento da Pele/fisiologia , Cicatrização/fisiologia
16.
Anticancer Res ; 40(2): 723-731, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32014914

RESUMO

BACKGROUND/AIM: MicroRNAs (miRNAs) play regulatory roles in pancreatic ductal adenocarcinoma (PDAC). However, it is still required to identify the function of miRNA-301-3p in pancreatic cancer cells. MATERIALS AND METHODS: Effects of luteolin on cell growth, TRAIL cytotoxicity, and miR-301-3p levels were evaluated. The role of miRNA-301-3p in regulating cell proliferation, target gene expression, and TRAIL cytotoxicity were studied. RESULTS: The levels of miR-301-3p were down-regulated in PANC-1 cells exposed to luteolin, which inhibits the growth of PANC-1 cells and sensitizes cells to TRAIL. The knockdown of miR-301-3p attenuates cell proliferation and enhances TRAIL cytotoxicity. In addition, caspase-8 was directly targeted by miR-301-3p. CONCLUSION: Our findings unveil a critical biological function of miR-301-3p in regulating cell proliferation and elevating an antiproliferative effect of TRAIL on cancer cells. Our observation of miR-301-3p/caspase-8 relationship can also serve to clarify the role of miR-301-3p in other cancer types and related diseases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Caspase 8/metabolismo , Luteolina/farmacologia , MicroRNAs/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Carcinoma Ductal Pancreático/genética , Caspase 8/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Técnicas de Silenciamento de Genes , Humanos , Luteolina/administração & dosagem , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Transfecção
17.
FEBS Lett ; 582(7): 1073-80, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18319061

RESUMO

Here, we show that Nucleophsomin/B23 provides lysine 263 as a critical binding site for ATP. Mutagenesis of lysine 263 to asparagine (K263N) disrupts B23 from ATP binding. While B23 WT exclusively localizes to the nucleolus, the B23-K263N is redistributed from the nucleolus to the nucleoplam. Notably, the K263N mutant is unstable, and displayed rapid degradation. Alteration of K263 induced B23 instability through increased ubiquitination and proteaosomal degradation. Moreover, mutation of K263 impedes the mitogenic effect of B23 in PC12 cells. Thus, K263 is a critical site for ATP binding and required for B23 stability, confining B23 in the nucleolus.


Assuntos
Trifosfato de Adenosina/metabolismo , Lisina/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Animais , Sítios de Ligação , Nucléolo Celular/química , Proliferação de Células , Lisina/genética , Proteínas Nucleares/genética , Nucleofosmina , Células PC12 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo
18.
Oncol Rep ; 20(3): 631-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18695916

RESUMO

The recombinant kringle domain (UK1) of urokinase-type plasminogen activator (uPA) has been shown to possess anti-angiogenic activity in vitro and in vivo. It has also been found to inhibit in vivo malignant glioma growth. In contrast, direct interaction of the kringle domain of uPA and integrin alphavbeta3 has been reported to be involved in plasminogen and leukocyte activation by uPA. Since integrin alphavbeta3 is involved in tumor angiogenesis, we investigated whether integrin alphavbeta3 is involved in the inhibitory function of UK1 in angiogenesis, by examining its anti-migratory activity. In a modified Boyden chamber assay, the Pichia-expressed UK1 dose-dependently inhibited the VEGF-induced migration of human umbilical vein endothelial cells (HUVECs). However, in the absence of growth factor stimulation, soluble UK1 alone did not induce or inhibit HUVEC migration. In cell adhesion, immobilized UK1 promoted HUVEC adhesion and spreading which were compared to BSA. Pretreatment of the anti-alphavbeta3 integrin antibody, significantly inhibited HUVEC binding to immobilized UK1, whereas neither anti-alpha2beta1 nor anti-alpha5beta1 integrin antibody had any effect, although pre-treatment of the soluble UK1 showed no marked alteration of the binding level of anti-alphavbeta3 antibody to HUVECs in FACS analysis. In a modified Boyden chamber assay, the function blocking antibodies against integrins alphavbeta3, alpha2beta1 and alpha5beta1 did not completely prevent the inhibitory effect of UK1 in HUVEC migration. These results suggest that UK1 interacts with integrin alphavbeta3, but its anti-migratory activity on endothelial cells is not significantly mediated by integrin alphavbeta3.


Assuntos
Movimento Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Integrina alfaVbeta3/metabolismo , Kringles , Veias Umbilicais/irrigação sanguínea , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Actinas , Anticorpos Monoclonais/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/imunologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Integrina alfa2beta1/imunologia , Integrina alfa2beta1/metabolismo , Integrina alfa5beta1/imunologia , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/imunologia , Neovascularização Fisiológica , Pichia , Proteínas Recombinantes , Fibras de Estresse , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo
19.
Anticancer Res ; 38(3): 1303-1310, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29491053

RESUMO

BACKGROUND/AIM: Breast cancer is the most common malignant cancer type in women, and triple-negative breast cancer (TNBC) is an extremely aggressive subtype of breast cancer with poor prognosis rates. The present study investigated the antitumor effect of polo-like kinase 1 (PLK1) inhibitor in combination with the tankyrase-1 (TNKS1) inhibitor on TNBC cells. MATERIALS AND METHODS: We evaluated the antitumor effects of combination therapy with PLK1 and TNKS1 inhibitor using cell viability analysis, apoptosis assay and transwell assay for cell invasion and migration in TNBC cells. RESULTS: Combination treatment with PLK1 and TNKS1 inhibitors not only inhibited the invasion and migration capacity of TNBC cells, but also increased the apoptosis and cell death of TNBC cells. The viability of TNBC cells with low expression of ß-catenin and high expression of PLK1 was not affected by treatment with PLK1 inhibitor. However, the combination treatment with the TNKS1 inhibitor significantly decreased cell invasion and migration and increased apoptosis. CONCLUSION: Combination therapy of PLK1 and TNKS1 inhibitors may improve the therapeutic efficacy of the current treatment for TNBC.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tanquirases/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Inibidores Enzimáticos/farmacologia , Feminino , Células HeLa , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Tanquirases/genética , Tanquirases/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Quinase 1 Polo-Like
20.
Oncogene ; 37(46): 6069-6082, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29991800

RESUMO

Autophagy is an evolutionarily conserved process regulating cellular homeostasis via digestion of dysfunctional proteins and whole cellular organelles by mechanisms, involving their enclosure into double-membrane vacuoles that are subsequently fused to lysosomes. Glioma stem cells utilize autophagy as a main mechanism of cell survival and stress response. Most recently, we and others demonstrated induction of autophagy in gliomas in response to treatment with chemical drugs, such as temozolomide (TMZ) or oncolytic adenoviruses (Ads). As autophagy has been implicated in the mechanism of Ad-mediated cell killing, autophagy deficiency in some glioma tumors could be the reason for their resistance to oncolysis. Despite the observed connection, the exact relationship between autophagy-activating cell signaling and adenoviral infection remains unclear. Here, we report that inhibition of autophagy in target glioma cells induces their resistance to killing by oncolytic agent CRAd-S-5/3. Furthermore, we found that downregulation of autophagy inducer Beclin-1 inhibits replication-competent Ad-induced oncolysis of human glioma by suppressing cell proliferation and inducing premature senescence. To overcome the autophagy-deficient state of such glioma cells and restore their susceptibility to oncolytic Ad infection, we propose treating glioma tumors with an anticancer drug tamoxifen (TAM) as a means to induce apoptosis in Ad-targeted cancer cells via upregulation of BAX/PUMA genes. In agreement with the above hypothesis, our data suggest that TAM improves susceptibility of Beclin-1-deficient glioma cells to CRAd-S-5/3 oncolysis by means of activating autophagy and pro-apoptotic signaling pathways in the target cancer cells.


Assuntos
Adenoviridae/genética , Proteínas Reguladoras de Apoptose/genética , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Glioma/tratamento farmacológico , Proteínas Proto-Oncogênicas/genética , Tamoxifeno/farmacologia , Regulação para Cima/genética , Proteína X Associada a bcl-2/genética , Células A549 , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Glioma/genética , Células HEK293 , Humanos , Camundongos , Terapia Viral Oncolítica/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA