Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 19(3): 1506-1510, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469214

RESUMO

Frost presents a serious problem for the human environment, resulting in such phenomena as downed power lines, damaged crops and stalled aircraft. In addition, frost and ice accumulation significantly decrease the performance of ships, wind turbines, and HVAC systems with high failure risk. Super-hydrophobic (SH) surface can be an appropriate solution for frost problems, due to its anti-icing properties that can prevent ice nucleation on the surface. In addition, in the case of conducting SH surface using carbon nanotubes (CNTs) as a filler, it can form an excellent heating unit, owing to the resistive heating effect. The purpose of this study is to produce a large-area conducting SH film that can prevent ice nucleus and remove ice formation rapidly. High aspect ratio carbon nanotubes (CNTs) as a conducting filler and adhesive polymer resin as a binder were used to form coating layer. In addition, silica particles (~7 nm) were used to stabilize nano-size roughness of the SH surface. Wet and dry etching processes were used on the substrate to improve wettability and to produce organic functional groups. To evaluate the de-icing effect, the fabricated SH surface was rapidly heated to 150 °C by applying voltage.

2.
Polymers (Basel) ; 16(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543356

RESUMO

This study investigates the secondary bonding of aircraft skin/stiffener assemblies using press conduction welding with carbon fiber/polyetherketoneketone thermoplastic composites and polyetherimide adhesive. Recognizing the challenges posed by conventional welding methods in maintaining material integrity and uniformity, this research explores an alternative methodology that mitigates these issues while ensuring high-strength bonds. The press conduction welding parameters were selected based on single-lap shear tests and applied in the bonding of skin and omega stiffener components. The temperature range was determined using differential scanning calorimetry. The pressure was held at 1 MPa for 180 s. The welding temperature that produced a high-bonding strength was identified experimentally; these key variables were then used in the welding process of the skin and omega stiffener. By analyzing how the fibers tear and the effectiveness of interdiffusion between the plies, we were able to gain insights into the bonding strength and fractured surface. The findings suggest that press conduction welding provides a viable route for secondary bonding in thermoplastic composite structures, highlighting its advantages in terms of processing efficiency and integrity. This study contributes to the understanding of the mechanical behaviors of bonded joints and underscores the significance of temperature control in the welding process.

3.
J Nanosci Nanotechnol ; 21(3): 1809-1814, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404453

RESUMO

Heating elements need a rapid heating property and long-term cycle stability when subjected to extreme temperatures. Carbon nanotube-based films can be used as ideal heating units owing to their superior electrical and thermal properties. However, carbon nanotube polymer composites are not appropriate for extreme conditions such as high temperatures (300 °C) due to the poor thermal stability of the polymer matrix. In this study, we fabricated a carbon nanotube web film, comprising heating elements consisting of pure carbon nanotubes, through the direct spinning method. The carbon nanotube web film has a microscale thickness. The carbon nanotube web film showed flexibility at high temperatures, while a fracture occurred in the case of the carbon nanotube polymer composite. We conducted electrical heating experiments on the curved carbon nanotube web film to observe the heating uniformity and flexibility. The heating test is conducted on various curved form heaters. The carbon nanotube web film showed rapid heating properties and a uniform heat distribution (temperature departure of less than 3%) without thermal aggregation. The curved heating units can be utilized in various applications such as functional clothes and de-icing systems having curved surfaces.

4.
Materials (Basel) ; 12(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31601030

RESUMO

The uniform temperature distribution, one of the requirements for long-term durability, is essential for composite heaters. An analytical model for temperature distribution of a tube-type heater was derived, and it revealed that thickness uniformity is one order more important than intrinsic material properties such as density, heat capacity, and electrical conductivity of the heating tube. We introduced a circumferential shearing process to fabricate a flexible, seamless tube-type heating layer of carbon nanotube/silicone rubber composite with outstanding uniform distribution of thickness and temperature, which may be attributed to a shorter characteristic dimension in the circumferential direction than in the axial direction. The temperature uniformity was experimentally verified at various temperatures under heating. The difference in measured thickness and temperature in circumferential direction was within ±1.3~3.0% (for tavg = 352.7 µm) and ±1.1% (for Tavg = 138.8 °C), respectively, all over the heating tube. Therefore, the circumferential shearing process can be effective for cylindrical heaters, like a heating layer of a laser printer, which fuse toners onto papers during printing.

5.
Nat Commun ; 10(1): 2537, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182709

RESUMO

Hybrid carbon nanotube composites with two different types of fillers have attracted considerable attention for various advantages. The incorporation of micro-scale secondary fillers creates an excluded volume that leads to the increase in the electrical conductivity. By contrast, nano-scale secondary fillers shows a conflicting behavior of the decreased electrical conductivity with micro-scale secondary fillers. Although several attempts have been made in theoretical modeling of secondary-filler composites, the knowledge about how the electrical conductivity depends on the dimension of secondary fillers was not fully understood. This work aims at comprehensive understanding of the size effect of secondary particulate fillers on the electrical conductivity, via the combination of Voronoi geometry induced from Swiss cheese models and the underlying percolation theory. This indicates a transition in the impact of the excluded volume, i.e., the adjustment of the electrical conductivity was measured in cooperation with loading of second fillers with different sizes.

6.
Nanoscale ; 7(2): 471-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25351278

RESUMO

Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a negative (NTC) or a positive temperature coefficient (PTC) of resistance, depending on several factors, e.g., the polymer nature and the filler shape. In this study, we developed a hybrid conducting zero-TCR composite having self-heating properties for thermal stability and reliable temperature control. The bi-layer composites consisted of a carbon nanotube (CNT)-based layer having an NTC of resistance and a carbon black (CB)-based layer having a PTC of resistance which was in direct contact with electrodes to stabilize the electrical resistance change during electric Joule heating. The composite showed nearly constant resistance values with less than 2% deviation of the normalized resistance until 200 °C. The CB layer worked both as a buffer and as a distributor layer against the current flow from an applied voltage. This behavior, which was confirmed both experimentally and theoretically, has been rarely reported for polymer-based composite systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA