Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(24): 241805, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776482

RESUMO

We report the first search results for axion dark matter using an 18 T high-temperature superconducting magnet haloscope. The scan frequency ranges from 4.7789 to 4.8094 GHz. No significant signal consistent with the Galactic halo dark matter axion is observed. The results set the best upper bound of axion-photon-photon coupling (g_{aγγ}) in the mass ranges of 19.764 to 19.771 µeV (19.863 to 19.890 µeV) at 1.5×|g_{aγγ}^{KSVZ}| (1.7×|g_{aγγ}^{KSVZ}|), and 19.772 to 19.863 µeV at 2.7×|g_{aγγ}^{KSVZ}| with 90% confidence level, respectively. This remarkable sensitivity in the high mass region of dark matter axion is achieved by using the strongest magnetic field among the existing haloscope experiments and realizing a low-noise amplification of microwave signals using a Josephson parametric converter.

2.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065182

RESUMO

We report details on the quenching incident of an 18 T high-temperature superconducting (HTS) magnet, which occurred in December 2020. It has been received that the no-insulation (NI) design of an HTS magnet is relatively safe in quenching. However, the NI design could not completely prevent the magnet from quenching and damaging the associated system. Due to significant vibrations and fast energy dissipation during quenching, the magnet and the detector components are seriously damaged. The manufacturer inspected the magnet after the incident and repaired it in the spring of 2021. The magnet showed stable and consistent performance after the repair. It is evident that the NI-HTS magnet still requires quench protection circuits to secure the magnet and associated system.

3.
Rev Sci Instrum ; 91(2): 023314, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113426

RESUMO

We report the design, construction, and operation results of an 18 T 70 mm cold-bore high temperature superconductor (HTS) no-insulation (NI) magnet, which is developed for an axion haloscope experiment. The magnet consists of 44 double-pancake coils wound with multi-width and multi-thickness REBa2Cu3O7-x (RE = rare earth) tapes. Owing to the NI feature, the magnet is highly compact; is 162 mm in outer diameter and 476 mm tall; and provides an environment of 0.22 T2 m3 within the cold-bore target space of 66 mm in diameter and 200 mm in length. After an initial performance test at SuNAM Co. Ltd., the magnet was installed at the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science in Daejeon, South Korea, in August 2017. The magnet has been successfully operating at the CAPP since then, except for maintenance in October 2018. The magnet may represent the first high field HTS user magnet that experienced long-term operation of over one year.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA