RESUMO
Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 µM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.
Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Calmodulina/genética , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Ligação ProteicaRESUMO
Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.