RESUMO
Paraprobiotics, inactivated microbial cells, regulate immune system and exhibit antioxidant and anti-inflammatory activities in patients with weakened immunity or the elderly. This study evaluated the anti-tumor effects of heat-killed Bifidobacterium and Lactobacillus on human gastric cancer MKN1 cells in vitro and in vivo in xenograft animal models. First, cytotoxicity and apoptosis in MKN1 cells of 11 different heat-killed Bifidobacterium or Lactobacillus strains were examined using the MTT assay or flow cytometry, respectively. Then, BALB/c nude mice xenograft animal models were implanted with human gastric cancer MKN1 cells and orally administered a selected single or a mixture of heat-killed bacterial strains to investigate their inhibitory effect on tumor growth. In addition, the expression of p-Akt, p53, Bax, Bak, cleaved caspase-9, -3, and PARP in the tumor tissues was analyzed using Western blotting assay or immunohistochemistry staining. The results show that heat-killed B. bifidum MG731 (MG731), L. reuteri MG5346 (MG5346), and L. rhamnosus MG5200 (MG5200) induced relatively greater apoptosis than other strains in MKN1 cells. Oral administration of a single dose or a mixture of MG731, MG5346, or MG5200 significantly delayed tumor growth, and MG731 had the most effective anti-tumor effect in the xenograft model. Protein expression of p-Akt, p53, Bax, cleaved caspase-3 and -9, and PARP in tumors derived from the xenograft model correlated with the results of the immunohistochemistry staining.
Assuntos
Bifidobacterium bifidum , Neoplasias Gástricas , Idoso , Animais , Apoptose , Bifidobacterium bifidum/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Xenoenxertos , Temperatura Alta , Humanos , Camundongos , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/metabolismoRESUMO
A novel autophagy inhibitor, autophazole (Atz), which promoted cancer cell death via caspase activation, is described. This compound was identified from cell-based high-content screening of an imidazole library. The results showed that Atz was internalized into lysosomes of cells where it induced lysosomal membrane permeabilization (LMP). This process generated nonfunctional autolysosomes, thereby inhibiting autophagy. In addition, Atz was found to promote LMP-mediated apoptosis. Specifically, LMP induced by Atz caused release of cathepsins from lysosomes into the cytosol. Cathepsins in the cytosol cleaved Bid to generate tBid, which subsequently activated Bax to induce mitochondrial outer membrane permeabilization (MOMP). This event led to cancer cell death via caspase activation. Overall, the findings suggest that Atz will serve as a new chemical probe in efforts aimed at gaining a better understanding of the autophagic process.
Assuntos
Antineoplásicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/químicaRESUMO
PURPOSE: Azelaic acid (AzA) is a dicarboxylic acid naturally occurring in various grains having anti-inflammatory and anti-oxidation properties. Recently, AzA is shown to reduce high-fat diet-induced adiposity in animals. However, its physiological role in lipid metabolism and aging in various environmental stresses is unknown. METHODS AND RESULTS: Using C. elegans as an invertebrate animal model, we demonstrate that AzA suppresses fat accumulation with no effect on lifespan at normal temperatures. Moreover, AzA promotes lifespan at low temperatures by elevation of unsaturated long-chain fatty acids and expression of genes in fatty acid desaturation. We further find that genes encoding fatty acid desaturases such as fat-1, fat-5, fat-6, and fat-7 are crucial for the lifespan-extending effect of AzA at low temperature. CONCLUSIONS: Taken together, our results suggest that AzA promotes adaption to low temperature in C. elegans via shifting fatty acid profile to unsaturated long-chain fatty acids.
Assuntos
Aclimatação/efeitos dos fármacos , Temperatura Baixa/efeitos adversos , Ácidos Dicarboxílicos/administração & dosagem , Longevidade/efeitos dos fármacos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos AnimaisRESUMO
Diabetes, a chronic metabolic disorder, is characterized by persistent hyperglycemia. This study aimed to evaluate the hypoglycemic and antioxidant activities of lactic acid bacteria strains isolated from humans and food products and investigate the probiotic properties of the selected four strains. The hypoglycemic activity of the isolated strains was examined by evaluating the α-glucosidase and α-amylase inhibitory activities. The antioxidant activity was measured using the DPPH, ABTS, and FRAP assays. Four strains (Lactiplantibacillus plantarum MG4229, MG4296, MG5025, and Lacticaseibacillus paracasei MG5012) exhibited potent α-glucosidase inhibitory (>75%) and α-amylase inhibitory (>85%) activities, which were comparable to those of acarbose (>50%; 1000 µg/mL). Similarly, the radical scavenging and antioxidant activities of the four strains were comparable to those of ascorbic acid (50 µg/mL). Additionally, the probiotic properties of the four selected strains were examined based on acid and bile salt tolerance, auto-aggregation ability, and antibiotic resistance. The four strains were resistant to pH 2 (>50% of survivability) and 0.5% bile salt (>80% of survivability). Therefore, we suggest that the selected strains with hypoglycemic, antioxidant, probiotic properties can potentially prevent diabetes.
Assuntos
Lactobacillales , Probióticos , Antioxidantes , Humanos , Hipoglicemiantes/farmacologia , alfa-AmilasesRESUMO
The anti-amnesic effect of a mixture (4:6 = phlorotannin:fucoidan from Ecklonia cava, P4F6) was evaluated on amyloid-beta peptide (Aß)-induced cognitive deficit mice. The cognitive function was examined by Y-maze, passive avoidance, and Morris water maze tests, and the intake of the mixture (P4F6) showed an ameliorating effect on Aß-induced learning and memory impairment. After the behavioral tests, superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) contents were confirmed in brain tissue, and in the results, the mixture (P4F6) attenuated Aß-induced oxidative stress. In addition, mitochondrial activity was evaluated by mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic signaling pathway, and the mixture (P4F6) enhanced mitochondrial function. Furthermore, the mixture (P4F6) effectively regulated tau hyperphosphorylation by regulating the protein kinase B (Akt) pathway, and promoted brain-derived neurotrophic factor (BDNF) in brain tissue. Moreover, in the cholinergic system, the mixture (P4F6) ameliorated acetylcholine (ACh) content by regulating acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression in brain tissue. Based on these results, we suggest that this mixture of phlorotannin and fucoidan (P4F6) might be a substance for improving cognitive function by effectively regulating cognition-related molecules.
Assuntos
Disfunção Cognitiva/tratamento farmacológico , Kelp , Fármacos Neuroprotetores/administração & dosagem , Polissacarídeos/administração & dosagem , Taninos/administração & dosagem , Acetilcolina/metabolismo , Animais , Organismos Aquáticos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Colinérgicos/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fitoterapia , Polissacarídeos/farmacologia , Taninos/farmacologiaRESUMO
The present study investigated the effect of high-temperature-processed green tea extract (HTP_GTE) and its bioactive components on the reduction of reactive oxygen species (ROS) and amyloid-beta (Aß) protein in human microvascular endothelial cells. Compared to Aß1-42-only treatment, pretreatment of HTP_GTE was revealed to effectively inhibit ROS generation (P<0.05). HTP_GTE and catechins not only inhibit Aß1-42 fibril formation but also destabilize preformed Aß1-42 fibrils. The presence of HTP_GTE, Aß1-42 fibril formation was significantly inhibited in a dose-dependent manner at 12.5-100 µg/ml of HTP_GTE, showing 86-56%, respectively. Treatment of various concentrations of HTP_GTE and catechins steadily destabilized the preformed Aß1-42 fibrils for 24â h in a dose-dependent manner. It was observed that the gallated groups such as epigallocatechin gallate, epicatechin gallate, gallocatechin gallate, and catechin gallate more effectively disturbed Aß1-42 fibril formation and destabilized the preformed Aß1-42 fibrils than the non-gallated group. Taken together, these findings supported that sterilized green tea could be promising natural anti-amyloidogenic agents associated with therapeutic approaches in Alzheimer's disease by scavenging ROS generation and Aß fibril in the brain tissue.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Camellia sinensis/química , Catequina/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Amiloide/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Catequina/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Temperatura Alta , Humanos , Microvasos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , CháRESUMO
This study was undertaken to investigate the neuroprotective effect of an ethanolic extract of Mori Cortex radicis (MCR) against high glucose (HG)-induced oxidative damage in PC12 cells. Cell cytotoxicity was examined using MTT and lactate dehydrogenase assays. To examine the antioxidative effects, intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and the activities of antioxidant enzymes were measured. The expressions of apoptosis-associated proteins were assessed. MCR was found to increase the viabilities of HG-induced PC12 cells and to inhibit ROS and MDA production and to promote antioxidative enzyme activities. Furthermore, MCR reduced apoptosis by upregulating p-Akt and Bcl-2/Bax ratio and reducing cytochrome c level. The main flavonoids in MCR were identified by HPLC to be kuwanon G and morusin. These results suggest the antioxidative effects of MCR protect against HG-induced oxidative stress and that MCR has potential therapeutic use for the prevention and treatment of diabetic neuro-degeneration.
Assuntos
Glucose/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Etanol/química , Flavonoides/farmacologia , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan catabolising enzyme, is known as a tumour cell survival factor that causes immune escape in several types of cancer. Flavonoids of Sophora flavescens have a variety of biological benefits for humans; however, cancer immunotherapy effect has not been fully investigated. The flavonoids (1-6) isolated from S. flavescens showed IDO1 inhibitory activities (IC50 4.3-31.4 µM). The representative flavonoids (4-6) of S. flavescens were determined to be non-competitive inhibitors of IDO1 by kinetic analyses. Their binding affinity to IDO1 was confirmed using thermal stability and surface plasmon resonance (SPR) assays. The molecular docking analysis and mutagenesis assay revealed the structural details of the interactions between the flavonoids (1-6) and IDO1. These results suggest that the flavonoids (1-6) of S. flavescens, especially kushenol E (6), as IDO1 inhibitors might be useful in the development of immunotherapeutic agents against cancers.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Sophora/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Ecklonia cava (E. cava) was investigated to compare the effect of polyphenol and fucoidan extract and mixture (polyphenol:fucoidan = 4:6) on cognitive function. The ameliorating effect of E. cava was evaluated using the Y-maze, passive avoidance and Morris water maze tests with a trimethyltin (TMT)-induced cognitive dysfunction model, and the results showed that the fucoidan extract and mixture (4:6) had relatively higher learning and memory function effects than the polyphenol extract. After a behavioral test, the inhibitory effect of lipid peroxidation and cholinergic system activity were examined in mouse brain tissue, and the fucoidan extract and mixture (4:6) also showed greater improvements than the polyphenol extract. Mitochondrial activity was evaluated using mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP, ΔΨm), adenosine triphosphate (ATP) content, and mitochondria-mediated protein (BAX, cytochrome C) analysis, and these results were similar to the results of the behavioral tests. Finally, to confirm the cognitive function-related mechanism of E. cava, the amyloid-ß production and tau hyperphosphorylation-medicated proteins were analyzed. Based on these results, the improvement effect of E. cava was more influenced by fucoidan than polyphenol. Therefore, our study suggests that the fucoidan-rich substances in E. cava could be a potential material for improving cognitive function by down-regulating amyloid-ß production and tau hyperphosphorylation.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Phaeophyceae/química , Fosforilação/efeitos dos fármacos , Polissacarídeos/farmacologia , Proteínas tau/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Compostos de Trimetilestanho/farmacologiaRESUMO
The treatment of neuropathic pain is one of the urgent unmet medical needs and T-type calcium channels are promising therapeutic targets for neuropathic pain. Several potent T-type channel inhibitors showed promising in vivo efficacy in neuropathic pain animal models and are being investigated in clinical trials. Herein we report development of novel pyrrolidine-based T-type calcium channel inhibitors by pharmacophore mapping and structural hybridisation followed by evaluation of their Cav3.1 and Cav3.2 channel inhibitory activities. Among potent inhibitors against both Cav3.1 and Cav3.2 channels, a promising compound 20n based on in vitro ADME properties displayed satisfactory plasma and brain exposure in rats according to in vivo pharmacokinetic studies. We further demonstrated that 20n effectively improved the symptoms of neuropathic pain in both SNL and STZ neuropathic pain animal models, suggesting modulation of T-type calcium channels can be a promising therapeutic strategy for the treatment of neuropathic pain.
Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Neuralgia/tratamento farmacológico , Pirrolidinas/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Modelos Animais de Doenças , Células HEK293 , Humanos , Ligadura , Masculino , Camundongos , Camundongos Knockout , Estrutura Molecular , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Pirrolidinas/síntese química , Pirrolidinas/química , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/cirurgia , EstreptozocinaRESUMO
Two new phenylspirodrimane derivatives, stachybotrysin (1) and stachybotrylactone B (2), were isolated from the cultures of the marine-derived fungus Stachybotrys sp. KCB13F013. The structures were determined by analyzing the spectroscopic data (1D and 2D NMR and MS) and chemical transformation, including the modified Mosher's method and single-crystal X-ray structure analysis. Compound 1 exhibited an inhibitory effect on osteoclast differentiation in bone marrow macrophage cells via suppressing the RANKL-induced activation of p-ERK, p-JNK, p-p38, c-Fos, and NFATc1.
Assuntos
Osteoclastos/efeitos dos fármacos , Stachybotrys/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Biologia Marinha , Camundongos , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , Osteoblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Ligante RANK/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
This study aimed to determine bioactive components and radical scavenging capacity of black raspberry seed extracts as byproducts obtaining during the juice (FSE) and wine (WSE) making process. Cyanidin-3-O-rutinoside was identified as a major anthocyanin and the total anthocyanin contents of fresh and wine seed were 78.24 and 41.61 mg/100 g of dry weight, respectively. The total phenolic and flavonoid contents of FSE and WSE were 2.31 g gallic acid equivalent (GAE) and 360.95 mg catechin equivalent (CE), and 2.44 g GAE and 379.54 mg CE per 100 g dry weight, respectively. The oxygen radical absorbance capacity (ORAC) values were 1041.9 µM TE/g for FSE and 1060.4 µM TE/g for WSE. Pretreatment of the FSE and WSE inhibited the generation of intracellular reactive oxygen species (ROS), DNA and protein damage induced by hydroxyl radicals, and Fe(3+)/ascorbic acid-induced lipid peroxidation in a dose dependent manner. WSE more effectively protected from oxidative damage than FSE. Results from the current study suggest that black raspberry seeds as byproducts from juice and wine processing could be potential sources for natural antioxidants.
RESUMO
Dual-modal fluorescent magnetic glyconanoparticles have been prepared and shown to be powerful in probing lectins displayed on pathogenic and mammalian cell surfaces. Blood group H1- and Le(b)-conjugated nanoparticles were found to bind to BabA displaying Helicobacter pylori, and Le(a)- and Le(b)-modified nanoparticles are both recognized by and internalized into DC-SIGN and SIGN-R1 expressing mammalian cells via lectin-mediated endocytosis. In addition, glyconanoparticles block adhesion of H. pylori to mammalian cells, suggesting that they can serve as inhibitors of infection of host cells by this pathogen. It has been also shown that owing to their magnetic properties, glyconanoparticles are useful tools to enrich lectin expressing cells. The combined results indicate that dual-modal glyconanoparticles are biocompatible and that they can be employed in lectin-associated biological studies and biomedical applications.
Assuntos
Carboidratos/química , Lectinas/química , Nanopartículas de Magnetita/química , Configuração de Carboidratos , Fluorescência , Helicobacter pylori/química , Helicobacter pylori/citologia , Humanos , Células Tumorais CultivadasRESUMO
BACKGROUND: Ligularia fischeri (common name Gomchwi) is known for its pharmaceutical properties and used in the treatment of jaundice, scarlet-fever, rheumatoidal arthritis, and hepatic diseases; however, little is known about its anti-inflammatory effect. In this study the influence of blanching and pan-frying on the anti-inflammatory activity of Ligularia fischeri (LF) was evaluated. RESULTS: Fresh LF and cooked LF showed no significant effect on the viability of macrophages after 24 h incubation. Fresh LF was found to be the most potent inhibitor of nitric oxide (NO) production at 100 µg/ml, while pan-fried LF showed little inhibitory effect on lipoloysaccharide (LPS) stimulated murine machrophage RAW264.7 cells. In contrast with its effect on NO production, pan-fried LF showed significant attenuation of the expression of inducible nitiric oxide synthase (iNOS) compared with fresh LF. In the cooking method of LF, PGE2 production was not affected in the LPS-induced RAW 264.7 cells. In LPS-induced RAW 264.7 cells, pretreatment by fresh and cooked LF increased COX2 mRNA expression. The 3-O-caffeoylquinic acid content of blanching and pan-frying LF increased by 4.92 and 9.7 fold with blanching and pan-frying respectively in comparison with uncooked LF. CONCLUSIONS: Regardless of the cooking method, Ligularia fischeri exhibited potent inhibition of NO production through expression of iNOS in LPS-induced RAW264.7 cells.
Assuntos
Asteraceae/química , Culinária/métodos , Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Preparações de Plantas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Asteraceae/classificação , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/análise , Dinoprostona/biossíntese , Temperatura Alta , Lipopolissacarídeos , Macrófagos/fisiologia , Camundongos , Ácido Quínico/análogos & derivados , Ácido Quínico/análise , Ácido Quínico/classificação , Células RAW 264.7 , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Sulfur-methyl-L-methionine (SMM) has been known to provide various biological functions such as radical scavenging effect, inhibition of adipocyte differentiation, and prevention of gastric mucosal damage. Kimchi cabbages are known to be a major food source providing SMM but its bioaccessibility has not been studied. The objective of current study was to determine both the digestive stability of SMM and the amount released from Kimchi cabbages under a simulated in vitro digestion model system. RESULTS: The in vitro digestion model system simulating a human gastrointestinal tract was carried out for measuring digestive recovery and bioaccessibility of SMM. SMM was quantified by using high-performance liquid chromatography with a fluorescence detector. Recovery of an SMM standard after digestion was 0.68 and 0.65% for fasted and fed conditions, respectively, indicating that the digestive stability of the SMM standard was not affected by dietary energy or co-ingested food matrix. The SMM standard was also significantly stable in acidic pH (P < 0.05). The bioaccessibility of SMM from Kimchi cabbages was measured under a fasted condition, resulted in 8.83, 14.71 and 10.88%, for salivary, gastric and small intestinal phases, respectively. CONCLUSION: Results from our study suggest that SMM from Kimchi cabbages, a component of food sources, is more bioavailable than SMM by itself.
Assuntos
Brassica/química , Digestão , Compostos de Enxofre/farmacocinética , Vitamina U/farmacocinética , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Jejum , Fermentação , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , República da Coreia , Compostos de Enxofre/metabolismo , Vitamina U/metabolismoRESUMO
Reported herein are two imidazole-based small molecules, termed neurodazine (Nz) and neurodazole (Nzl), which induce neuronal differentiation of pluripotent P19 cells. Their ability to induce neurogenesis of P19 cells is comparable to that of retinoic acid. However, Nz and Nzl were found to be more selective neurogenesis inducers than retinoic acid owing to their unique ability to suppress astrocyte differentiation of P19 cells. Our results also show that Nz and Nzl promote production of physiologically active neurons because P19-cell-derived neurons induced by these substances have functional glutamate responsiveness. The present study suggests that Nz and Nzl could serve as important chemical tools to induce formation of specific populations of neuronal cell types from pluripotent cells.
Assuntos
Imidazóis/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Imidazóis/química , Camundongos , Estrutura Molecular , Neurônios/patologia , Bibliotecas de Moléculas Pequenas/químicaRESUMO
Among different heat-responsive polymers, hydroxypropyl cellulose (HPC) is biodegradable and is widely used in products that are harmless to the human body, such as food and pharmaceuticals. When the temperature of the hydrogel-type HPC increases, the hydrophilic bonds between the HPC molecules break, and the HPC molecules aggregate owing to the hydrophobic bonds. Therefore, light transmittance may vary because the aggregated HPC molecules scatter light. This study investigated the implementation of a display using the thermoreversible phase transition of HPC. Herein, a near-infrared (NIR) laser was irradiated only to a local area to control the surface temperature and enable the effective operation of the thermoreversible phase transition of HPC. For this, cesium tungsten oxide (CTO), which absorbs NIR light and generates heat, was mixed with the HPC hydrogel to improve the photothermal effect. Moreover, by additionally mixing carbon nanotubes (CNTs) with high thermal conductivity, the heat generated from the CTO is quickly transferred to the HPC hydrogel, and the heat of the HPC hydrogel is quickly cooled through the CNTs after stopping the NIR laser irradiation. The produced NIR-writing CTO-CNT-HPC (CCH) thermoresponsive display exhibited a fast thermoresponsive time. The CCH thermoresponsive display developed in this study can be applied in situations that require fast display response times, such as interactive advertising, property exhibitions, navigation systems for car, schedule information, event information, and public announcements.
RESUMO
Chest wall reconstruction is challenging due to the complex shape and large defect size. The three-dimensional printing technology enables the fabrication of customized implants, and 3D-printed pure-titanium could provide superior mechanical properties to conventional materials. The aim of this study was to evaluate long-term outcomes of patients undergoing chest wall reconstruction with a 3D-printed pure-titanium implant. Between August 2018 and May 2021, 5 patients underwent surgery due to sternal metastasis (n = 3), postoperative sternal wound infection (n = 1) and deformity (n = 1). The customized implant was designed and constructed based on the size and shape of the chest wall defect measured on computed tomography. All patients demonstrated uneventful recovery without complications during the hospital course. During the median follow-up of 20 months, 1 patient underwent revision surgery due to implant breakage, and 1 removed the implant due to trauma-related chest wall infection. One patient died from cancer progression, while 3 patients are alive without any implant-related complications. Chest wall reconstruction using a 3D-printed pure-titanium implant could be a novel alternative for patients with various conditions affecting the sternum and ribs.
RESUMO
The correlation between surface roughness and energy density in the down surface area of AlSi10Mg alloy manufactured by selective laser melting was analyzed. This study investigated the relationship between the contour melt pool shape and surface roughness in the down surface area across an energy density range of 10-150 J/mm³. As the energy density increased, the contour melt pool in the down surface area became more stable, which significantly influenced surface roughness. Low energy density resulted in the unstable formation of the contour melt pool, leading to a deterioration in surface quality, whereas high energy density promoted the stable formation of the melt pool. Sufficient energy density is essential for the complete formation of the contour melt pool on the down surface, which plays a crucial role in reducing surface roughness. However, within the energy density range where the contour melt pool is fully formed, keyhole defects may occur, and it can be anticipated that these defects may worsen at energy densities exceeding the critical threshold.
RESUMO
Transition-metal sulfides are emerging as promising materials for chemiresistive gas sensorsâa field still dominated by semiconducting metal oxides. Despite the availability of materials with tunable electronic, optical, physical, and chemical properties, few studies have moved beyond synthesis to provide strategies for enhancing gas sensing performance through material modification. Here, we present a simple, scalable synthetic strategy for developing an optically semitransparent, flexible NH3 gas sensor with a highly uniform, ultrathin CuS (covellite) active sensing layer. The optical and chemical properties of the CuS were precisely controlled near the percolation threshold of thin-film formation by varying key experimental parameters such as the Cu film thickness (<10 nm) and the sulfurization time (â¼90 s) under ambient conditions. Experimental and computational studies of CuS and its NH3 sensing characteristics identify key physicochemical properties. The controlled surface chemistry and morphology of the ultrathin CuS layer demonstrate its effectiveness in functional NH3 sensing devices, which achieve a calculated detection limit of 1.38 ppm for NH3 gas at 150 °C, along with exceptional mechanical robustness and optical semitransparency in the visible-light spectrum.