Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 738: 150562, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173335

RESUMO

Skin wounds heal faster during stem cell differentiation. Cold plasma reportedly enhances cell proliferation and differentiation and enhances the efficacy of stem cell therapy. However, the exact mechanism of action involved remains unknown. Therefore, this study aimed to evaluate the effect of a combination therapy involving the transplantation of mouse mesenchymal stem cells (mMSCs) into mice with wounds followed by their activation using no-ozone cold plasma (NCP). Balb/c mMSCs were transplanted into BALB/c mice and treated with NCP for 5 min. The animals were divided into four groups based on treatments received: no treatment (Wound), mMSCs only (mMSC), NCP only (NCP), and both mMSC and NCP (mMSC + NCP). NCP treatment was administered six times over two weeks, and tissue samples were prepared by sacrificing the mice in the 1st and 2nd weeks. The wound healing efficacy was assessed using morphological, histological, and molecular approaches including wound healing length measurements, hematoxylin and eosin staining, Masson trichrome staining, immunofluorescence staining, immunohistochemistry, and real-time polymerase chain reaction. The wound healing effect was better in the mMSC + NCP group than that in the groups treated with either. Tracking the injected mMSCs in mice also revealed that the mMSC + NCP group had a greater survival rate. Furthermore, upon wound healing, the mMSC + NCP group exhibited elevated levels of growth factors, like platelet-derived growth factor, transforming growth factor-beta, and vascular endothelial growth factor. These results suggest that NCP stimulated transplanted mMSCs, resulting in faster wound healing. Therefore, further studies are warranted in preclinical and clinical studies to confirm this effect.

2.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892350

RESUMO

Periodontitis is an inflammatory disease caused by Porphyromonas gingivalis (P. gingivalis) in the oral cavity. This periodontal disease causes damage to the periodontal ligament and alveolar bone and can cause tooth loss, but there is no definite treatment yet. In this study, we investigated the possibility of using no-ozone cold plasma to safely treat periodontitis in the oral cavity. First, human gingival fibroblasts (HGFs) were treated with P. gingivalis-derived lipopolysaccharide (PG-LPS) to induce an inflammatory response, and then the anti-inflammatory effect of NCP was examined, and a study was conducted to identify the mechanism of action. Additionally, the anti-inflammatory effect of NCP was verified in rats that developed an inflammatory response similar to periodontitis. When NCP was applied to PG-LPS-treated HGFs, the activities of inflammatory proteins and cytokines were effectively inhibited. It was confirmed that the process of denaturing the medium by charged particles of NCP is essential for the anti-inflammatory effect of NCP. Also, it was confirmed that repeated treatment of periodontitis rats with NCP effectively reduced the inflammatory cells and osteoclast activity. As a result, this study suggests that NCP can be directly helpful in the treatment of periodontitis in the future.


Assuntos
Anti-Inflamatórios , Fibroblastos , Gengiva , Lipopolissacarídeos , Periodontite , Porphyromonas gingivalis , Animais , Periodontite/microbiologia , Periodontite/tratamento farmacológico , Ratos , Anti-Inflamatórios/farmacologia , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ozônio/farmacologia , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Masculino , Citocinas/metabolismo , Modelos Animais de Doenças , Óxido Nítrico/metabolismo , Células Cultivadas
3.
Medicina (Kaunas) ; 60(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39202599

RESUMO

Background and Objectives: Enhanced osteoblast differentiation may be leveraged to prevent and treat bone-related diseases such as osteoporosis. No-ozone cold plasma (NCP) treatment is a promising and safe strategy to enhance osteoblast differentiation. Therefore, this study aimed to determine the effectiveness of direct and indirect NCP treatment methods on osteoblast differentiation. Mouse osteoblastic cells (MC3T3-E1) were treated with NCP using different methods, i.e., no NCP treatment (NT group; control), direct NCP treatment (DT group), direct NCP treatment followed by media replacement (MC group), and indirect treatment with NCP-treated media only (PAM group). Materials and Methods: The MC3T3-E1 cells were subsequently assessed for cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and ALP and osteocalcin mRNA expression using real-time polymerase chain reaction. Results: Cell proliferation significantly increased in the NCP-treated groups (DT and PAM; MC and PAM) compared to the NT group after 24 h (p < 0.038) and 48 h (p < 0.000). ALP activity was increased in the DT and PAM groups at 1 week (p < 0.115) and in the DT, MC, and PAM groups at 2 weeks (p < 0.000) compared to the NT group. Calcium deposition was higher in the NCP-treated groups than in NT group at 2 and 3 weeks (p < 0.000). ALP mRNA expression peaked in the MC group at 2 weeks compared to the NP group (p < 0.014). Osteocalcin mRNA expression increased in the MC group at 2 weeks (p < 0.000) and was the highest in the PAM group at 3 weeks (p < 0.000). Thus, the effects of direct (DT and MC) and indirect (PAM) treatment varied, with MC direct treatment showing the most significant impact on osteoblast activity. Conclusions: The MC group exhibited enhanced osteoblast differentiation, indicating that direct NCP treatment followed by media replacement is the most effective method for promoting bone formation.


Assuntos
Fosfatase Alcalina , Diferenciação Celular , Proliferação de Células , Osteoblastos , Gases em Plasma , Animais , Osteoblastos/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Ozônio/farmacologia , Ozônio/uso terapêutico , Osteocalcina/análise
4.
Medicina (Kaunas) ; 59(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37893489

RESUMO

Background and Objectives: The oral cavity is inhabited by pathogenic bacteria, whose growth can be inhibited by synthetic oral drugs, including antibiotics and other chemical compounds. Natural antimicrobial substances that elicit fewer negative side effects may serve as alternatives to synthetic agents for long-term use. Thus, the aim of this study was to evaluate the effects of edible mixed herbal extracts on the growth of oral pathogenic bacteria. Materials and Methods: The yield of each herbal extract was as follows: 5% Schizonepeta tenuifolia Briq (STB), 10.94% Mentha piperascens (MP), 5.47% Acanthopanax sessiliflorus Seem (AS), and 10.66% Glycyrrhiza uralensis (GU). The herbal extracts used included 0.5 mg/mL STB, 1.5 mg/mL MP, 1.5 mg/mL AS, and 2.0 mg/mL GU. Antimicrobial tests, morphological analyses (using scanning electron microscopy), microbial surface hydrophobicity measurements, and oral malodor reduction tests were performed using each extract. Statistical analyses were performed with IBM® SPSS® (version 24), using paired t-tests. Results: The mixed herbal extracts significantly inhibited the growth of Streptococcus mutans, Enterococcus faecalis, Candida albicans, and Porphyromonas gingivalis compared to the control (p < 0.001). Scanning electron microscopy results further revealed altered cellular morphology in the groups treated with the mixed herbal extracts. Additionally, the hydrophobicity assay results showed that the mixed herbal extracts reduced the oral adhesion capacities of bacteria (p < 0.001). Administration of the mixed herbal extracts also reduced the levels of volatile sulfur compounds, the main contributors to oral malodor (p < 0.001). Conclusions: Edible mixed herbal extracts can effectively eliminate oral pathogens and may be useful for improving oral health. The herbal extracts used were effective against all species of oral pathogens studied in this report.


Assuntos
Anti-Infecciosos , Halitose , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Streptococcus mutans , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Medicina (Kaunas) ; 59(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37763761

RESUMO

Background and Objectives: This study confirms the possibility of using Rhus verniciflua Stokes (RVS) extract as a natural treatment for oral candidiasis. Materials and Methods: RVS was extracted with 70% ethanol to examine the antioxidant activity through polyphenol, flavonoid content, and DPPH (1,1-diphenyl-2-picrylhydrazyl). To evaluate the antifungal effect against Candida albicans (C. albicans; KCTC 7965/ATCC 10231) and evaluate the stability of RVS, a water-soluble tetrazolium salt (WST-1) assay was performed in human keratinocytes (HaCaT). Results: The findings revealed that RVS extract has fairly high antioxidant activity. The clear zones of the RVS extract against C. albicans increased in diameter due to the inhibition of fungal growth at higher concentrations. Treatment with the 1.25 mg/mL RVS extract had a more than 99% antifungal effect against C. albicans, and the 20 mg/mL RVS extract had a 100% antifungal effect. The WST-1 assay showed that the RVS extract induced low cell viability in the HaCaT cells, which inhibited their proliferation, and the RVS extract is also toxic to normal cells. Conclusions: Although the RVS extract with high antioxidant activity showed clear antifungal activity against C. albicans, it exhibited a low survival rate. Therefore, the development of a safe natural antibiotic is necessary.


Assuntos
Antifúngicos , Rhus , Humanos , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Antibacterianos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
6.
Int J Med Sci ; 19(12): 1732-1742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313226

RESUMO

Background: This experimental research aimed to determine whether No-ozone Cold Plasma (NCP) has regenerative effect on crushed injured sensory nerves in a rat model (Wistar A) and to evaluate whether NCP can be used as an alternative treatment method for sensory nerve injury in the oral-maxillofacial region. Methods: A total of 10 Wistar A rats were used for this experiment. They were divided into three groups according to whether the mental nerve of the left mandible was injured and NCP was applied or not: group 1 (n=3) (non-mental nerve damage, non-MD) - the left mental nerve was exposed and non-damaged; group 2 (n=3) (mental nerve damage, MD) - the left mental nerve was exposed and damaged, NCP was not applied; and group 3 (n=4) (mental nerve damage and NCP, MD-NCP) - the left mental nerve was exposed and damaged, NCP was applied with regular intervals (three times a week). Results: For the behavior analysis, von Frey test was used. Furthermore, the nerve tissues were examined with hematoxylin and eosin (H&E) staining, and the extent of neurorecovery was evaluated with the immunofluorescence staining of certain markers. The behavioral analysis showed that the function recovery sensory nerve was faster in group 3 (MD-NCP). In the histomorphologic and immunofluorescence analyses, the expression of the factors involved in neurorecovery was much higher in group 3 than in group 2 (MD). Conclusions: The expeditious recovery of sensory nerve function as well as the higher expression of the factors indicating nerve function recovery in the NCP-treated group suggest that NCP has a positive effect on regeneration after sensory nerve crushing injury. Therefore, in the case of sensory impairment of the oral-maxillofacial region, no-ozone cold plasma can be applied for therapeutic effect.


Assuntos
Lesões por Esmagamento , Traumatismos do Nervo Mandibular , Ozônio , Traumatismos dos Nervos Periféricos , Gases em Plasma , Ratos , Animais , Nervo Isquiático/lesões , Regeneração Nervosa , Gases em Plasma/uso terapêutico , Ozônio/farmacologia , Ozônio/uso terapêutico , Ratos Wistar , Traumatismos dos Nervos Periféricos/tratamento farmacológico
7.
Int Endod J ; 54(9): 1548-1556, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33938023

RESUMO

AIM: To evaluate whether the use of non-thermal plasma (NTP) could reduce triethylene glycol dimethacrylate (TEGDMA)-mediated damage in MDPC-23 cells. METHODOLOGY: The effects of NTP and TEGDMA on MDPC-23 cell proliferation were tested using WST-1 assays after pretreatment with NTP for 1 min and exposure to TEGDMA. Live/Dead assays were used to visualize cell death. To monitor the effects of NTP and TEGDMA on the cell cycle and apoptotic cell death, flow cytometry was performed. Western blotting was used to assess changes in protein levels mediated by NTP and TEGDMA treatment, and enzyme-linked immunosorbent assays were performed to evaluate the effects of NTP and TEGDMA on prostaglandin E2 (PGE2 ) expression. One-way analysis of variance and Duncan's post hoc tests were used for statistical analysis. RESULTS: NTP treatment effectively protected cells from TEGDMA-mediated cell damage and blocked TEGDMA-mediated cell growth inhibition (p < .05). NTP appeared to protect cells from death (p < .05) and blocked TEGDMA-mediated apoptotic cell death. Additionally, NTP reduced TEGDMA-mediated apoptotic activation of poly (ADP) ribose polymerase-1 and caspase-3 (p < .05). Furthermore, NTP effectively reduced TEGDMA-mediated expression of cyclooxygenase-2 and PGE2 proteins by inhibiting nuclear factor-κB protein expression (p < .05). CONCLUSIONS: NTP alleviated TEGDMA-mediated adverse effects by reducing cytotoxicity and inflammatory reactions in cells exposed to TEGDMA.


Assuntos
Odontoblastos , Gases em Plasma , Humanos , Polietilenoglicóis , Ácidos Polimetacrílicos/toxicidade
8.
Int J Med Sci ; 17(8): 1112-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410841

RESUMO

The objective of this study was to evaluate the effect of non-thermal plasma (NTP) on the healing process of peripheral nerve crush injuries, which can occur during dental implant procedures. For this, a rat model of sciatic nerve crush injury (SNCI) was adopted. The rats were divided into three groups: non-nerve damage (non-ND), nerve damage (ND), and ND+NTP group. To evaluate the sciatic nerve (SN) function, the static sciatic index was calculated, and the muscle and SN tissues were subjected to a histologic analysis. The results showed that NTP effectively accelerated the healing process of SNCI in rats. In contrast to the ND group, which showed approximately 60% recovery in the SN function, the NTP-treated rats showed complete recovery. Histologically, the NTP treatments not only accelerated the muscle healing, but also reduced the edema-like phenotype of the damaged SN tissues. In the ND group, the SN tissues had an accumulation of CD68-positive macrophages, partially destroyed axonal fibers and myelinated Schwann cells. Conversely, in the ND+NTP group, the macrophage accumulation was reduced and an overall regeneration of the damaged axon fibers and the myelin sheath was accomplished. The results of this study indicate that NTP can be used for healing of injured peripheral nerves.


Assuntos
Lesões por Esmagamento/terapia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Gases em Plasma/uso terapêutico , Animais , Axônios/fisiologia , Lesões por Esmagamento/etiologia , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Masculino , Bainha de Mielina/fisiologia , Traumatismos dos Nervos Periféricos/etiologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Fatores de Tempo
9.
BMC Complement Altern Med ; 19(1): 231, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462222

RESUMO

BACKGROUND: In Korea and China, asiasari radix (AR) is widely used as a traditional anti-inflammatory and analgesic agent. After its skin-regenerating and hair loss-preventing activities were identified, several types of AR extracts were used for aesthetic purposes. Nevertheless, the effect of ARE on various types of skin cancers was not fully studied yet. METHODS: In this study, we tested the effect of an ethanolic AR extract (ARE) on G361 human melanoma and HaCaT human keratinocyte cell lines. After ARE exposure, cell growth and the expression patterns of proteins and genes were monitored. RESULTS: The ARE-mediated cell growth inhibition was greater in G361 cells than in HaCaT cells due to differences in its cell growth regulation effects. Interestingly, ARE treatment induced caspase-3-mediated apoptosis in G361 cells, but not in HaCaT cells. Furthermore, ARE reduced the expression of p53 and p21 proteins in G361 cells, whereas it induced their expression in HaCaT cells. ARE induced cell death in G361 cells through the reactive oxygen species (ROS)-dependent regulation of p53 and p21 in G361 cells. Microarray analysis showed that ARE regulates Mouse double minute 2 homolog (MDM2) and CASP8 and FADD-like apoptosis regulator (CFLAR) gene expression in G361 and HaCaT cells differently. CONCLUSION: The treatment of ARE preferentially induces apoptosis in melanoma cells by the ROS-dependent differential regulation of p53 level. Therefore, ARE can be used as a new medicinal option for melanoma.


Assuntos
Apoptose/efeitos dos fármacos , Asarum/química , Melanoma/metabolismo , Extratos Vegetais/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Etanol , Humanos , Raízes de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/análise
10.
Int J Med Sci ; 15(11): 1203-1209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123058

RESUMO

Non-thermal plasma (NTP) has several beneficial effects, and can be applied as a novel instrument for skin treatment. Recently, many types of NTP have been developed for potential medical or clinical applications, but their direct effects on skin activation remain unclear. In this study, the effect of NTP on the alteration of mouse skin tissue was analyzed. After NTP treatment, there were no signs of tissue damage in mouse skin, whereas significant increases in epidermal thickness and dermal collagen density were detected. Furthermore, treatment with NTP increased the expression of various growth factors, including TGF-α, TGF-ß, VEGF, GM-CSF, and EGF, in skin tissue. Therefore, NTP treatment on skin induces the expression of growth factors without causing damage, a phenomenon that might be directly linked to epidermal expansion and dermal tissue remodeling.


Assuntos
Citocinas/metabolismo , Gases em Plasma , Pele/metabolismo , Animais , Colágeno , Camundongos , Fator de Crescimento Transformador beta/metabolismo
11.
Int J Med Sci ; 14(11): 1101-1109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104464

RESUMO

Melanomas are fast growing high-mortality tumors, and specific treatments for melanomas are needed. Melanoma cells overexpress focal adhesion kinase (FAK) compared to normal keratinocytes, and we sought to exploit this difference to create a selectively lethal therapy. We combined gold nanoparticles (GNP) with antibodies targeting phosphorylated FAK (p-FAK). These conjugates (p-FAK-GNP) entered G361 melanoma cells and bound p-FAK. Treatment with p-FAK-GNP decreased the viability of G361 cells in a time dependent manner by inducing apoptosis. To maximize the preferential killing of G361 cells, non-thermal atmospheric pressure plasma was used to stimulate the GNP within p-FAK-GNP. Combined treatment with plasma and p-FAK-GNP showed much higher lethality against G361 cells than HaCaT keratinocyte cells. The p-FAK-GNP induced apoptosis over 48 hours in G361 cells, whereas plasma and p-FAK-GNP killed G361 cells immediately. This study demonstrates that combining plasma with p-FAK-GNP results in selective lethality against human melanoma cells.


Assuntos
Anticorpos/química , Proteína-Tirosina Quinases de Adesão Focal/imunologia , Ouro/química , Melanoma/metabolismo , Nanopartículas Metálicas/química , Anticorpos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Fosforilação , Pressão
12.
BMC Complement Altern Med ; 17(1): 340, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655324

RESUMO

BACKGROUND: Jaun-ointment (JO), also known as Shiunko in Japan, is one of the most popular medicinal formulae used in Korean traditional medicine for the external treatment of skin wound and inflammatory skin conditions. Since JO is composed of crude mixture of two herbal extracts (radix of Lithospermum erythrorhizon Siebold & Zucc and Angelica gigas Nakai), those been proved its anti-inflammatory activities in-vitro and in-vivo, JO has been expected as a good alternative treatment option for atopic dermatitis (AD). However, due to the lack of strategies for the penetrating methods of JO's various anti-inflammatory elements into the skin, an effective and safe transdermal drug delivery system needs to be determined. Here, low-temperature argon plasma (LTAP) was adopted as an ancillary partner of topically applied JO in a mice model of AD and the effectiveness was examined. METHODS: Dorsal skins of NC/Nga mice were challenged with DNCB (2,4-dinitrochlorobenzene) to induce AD. AD-like skin lesions were treated with JO alone, or in combination with LTAP. Inflammatory activity in the skin tissues was evaluated by histological analysis and several molecular biological tests. RESULTS: LTAP enhanced the effect of JO on AD-like skin lesion. Topical application of JO partially inhibited the development of DNCB-induced AD, shown by the moderate reduction of eosinophil homing and pro-inflammatory cytokine level. Combined treatment of JO and LTAP dramatically inhibited AD phenotypes. Interestingly, treatment with JO alone did not affect the activity of nuclear factor (NF)κB/RelA in the skin, but combined treatment of LTAP-JO blocked DCNB-mediated NFκB/RelA activation. CONCLUSIONS: LTAP markedly enhanced the anti-inflammatory activity of JO on AD-like skin lesions. The effect of LTAP may be attributed to enhancement of drug penetration and regulation of NFκB activity. Therefore, the combination treatment of JO and LTAP could be a potential strategy for the treatment of AD.


Assuntos
Anti-Inflamatórios/administração & dosagem , Argônio/administração & dosagem , Dermatite Atópica/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Animais , Dermatite Atópica/etiologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Dinitroclorobenzeno/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Japão , Masculino , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , Pomadas/administração & dosagem , Gases em Plasma/administração & dosagem
13.
ScientificWorldJournal ; 2015: 581731, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685843

RESUMO

The conventional light source used for tooth bleaching has the potential to cause thermal damage, and the actual role of the light source is doubtful. In this study, we evaluated bleaching efficacy, temperature, and morphological safety after tooth bleaching with nonthermal atmospheric pressure plasma. Tooth bleaching combined with plasma had improved efficacy in providing a higher level of brightness. The temperature of the pulp chamber was maintained around 37°C, indicating that the plasma does not cause any thermal damage. The morphological results of tooth bleaching with plasma did not affect mineral composition under scanning electron microscopy (SEM) observations. On the basis of these results, the application of plasma and low concentration of 15% carbamide peroxide (CP) has a high capability for effective tooth bleaching. It can be documented that plasma is a safe energy source, which has no deleterious effects on the tooth surface.


Assuntos
Gases em Plasma/uso terapêutico , Clareadores Dentários/uso terapêutico , Clareamento Dental/métodos , Humanos , Microscopia Eletrônica de Varredura , Gases em Plasma/efeitos adversos , Temperatura , Dente/efeitos dos fármacos , Dente/ultraestrutura , Clareamento Dental/efeitos adversos , Clareadores Dentários/efeitos adversos , Resultado do Tratamento
14.
J Nanobiotechnology ; 12: 29, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25104171

RESUMO

BACKGROUND: Recently, non-thermal atmospheric pressure plasma sources have been used for biomedical applications such as sterilization, cancer treatment, blood coagulation, and wound healing. Gold nanoparticles (gNPs) have unique optical properties and are useful for biomedical applications. Although low-temperature plasma has been shown to be effective in killing oral bacteria on agar plates, its bactericidal effect is negligible on the tooth surface. Therefore, we used 30-nm gNPs to enhance the killing effect of low-temperature plasma on human teeth. RESULTS: We tested the sterilizing effect of low-temperature plasma on Streptococcus mutans (S. mutans) strains. The survival rate was assessed by bacterial viability stains and colony-forming unit counts. Low-temperature plasma treatment alone was effective in killing S. mutans on slide glasses, as shown by the 5-log decrease in viability. However, plasma treatment of bacteria spotted onto tooth surface exhibited a 3-log reduction in viability. After gNPs were added to S. mutans, plasma treatment caused a 5-log reduction in viability, while gNPs alone did not show any bactericidal effect. The morphological changes in S. mutans caused by plasma treatment were examined by transmission electron microscopy, which showed that plasma treatment only perforated the cell walls, while the combination treatment with plasma and gold nanoparticles caused significant cell rupture, causing loss of intracellular components from many cells. CONCLUSIONS: This study demonstrates that low-temperature plasma treatment is effective in killing S. mutans and that its killing effect is further enhanced when used in combination with gNPs.


Assuntos
Ouro/farmacologia , Nanopartículas Metálicas/química , Viabilidade Microbiana/efeitos dos fármacos , Dente Molar/microbiologia , Gases em Plasma/farmacologia , Streptococcus mutans/efeitos dos fármacos , Contagem de Colônia Microbiana , Ouro/química , Humanos , Gases em Plasma/química , Temperatura
15.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794173

RESUMO

BACKGROUND: This study aimed to investigate the antibacterial and cytotoxic potential of Phellodendron amurense Ruprecht (PAR) extract against Streptococcus mutans (S. mutans) and explore the possibility of using PAR extract as an anticariogenic agent. METHODS: Mixed extracts were prepared at 0, 1.25, 2.5, and 5 mg/mL concentrations, and an S. mutans-containing solution of 100 µL was inoculated into the medium. The survival rate of human keratinocyte (HaCaT) cells was assessed to confirm stability. One-way ANOVA was performed to evaluate the antibacterial activity against S. mutans and the proliferation of HaCaT cells. RESULTS: Higher concentrations of the PAR extract showed more growth inhibition of S. mutans over time, with the complete inactivation of S. mutans at 5 mg/mL. HaCaT cell density was reduced at a PAR extract concentration of 1.25 mg/mL, but IC50 was not observed, confirming that the concentration used did not affect the cytotoxicity and proliferation. CONCLUSIONS: Results showed that the PAR extract was excellent as a natural substance with anticariogenic effects that inhibited the growth of S. mutans and did not affect the cell viability, thus indicating the potential for clinical application.

16.
BMC Complement Med Ther ; 24(1): 46, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245726

RESUMO

BACKGROUND: This study aimed to evaluate the effect of argon-based No-ozone Cold Plasma (NCP) on neuroblastoma cancer cell apoptosis. METHODS: Experiments were performed with SK-N-SH and HS 68. Cell cultures were treated with NCP for 1, 3, and 5 min. NCP was applied using three different strategies: direct NCP application to cell cultures, to only media, and to only cells. Evaluation of cell viability and the level of the reactive oxygen species (ROS) was performed. N-acetyl-L-cysteine (NAC) was also used to antagonize intracellular ROS. Cleaved caspase 3, PARP, aquaporin (AQP) 3 and 8 were detected. RESULTS: NCP induced a gradual decrease in the SK-N-SH cell viability. In contrast, the viability of HS 68 cells did not change. SK-N-SH cells viability was reduced the most when the only media-NCP application strategy was employed. Intracellular ROS levels were significantly increased with time. Cleaved caspase 3 and PARP were increased at 6 h after NCP application. SK-N-SH cells remained viable with NAC after NCP application. AQP 3 and 8 were over-expressed in SK-N-SH cells. CONCLUSION: These findings demonstrate the anti-cancer effect of NCP on neuroblastoma cells. NCP enhanced the selective apoptosis of neuroblastoma cells due to the increased intracellular ROS.


Assuntos
Neuroblastoma , Ozônio , Gases em Plasma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Ozônio/farmacologia , Ozônio/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico
17.
Biomedicines ; 11(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37371658

RESUMO

Ultraviolet (UV) is the main cause of sunburn on the skin as it induces erythema and accelerates pigmentation. Vitamin C is one of the most frequently used compounds to reduce UV-induced skin pigmentation, but it has limitations in absorption through the skin. In this study, we tested whether a no-ozone cold plasma (NCP) treatment can improve UV-irradiated skin by helping the action of Vitamin C. For this, among five groups of HRM-2 hairless mice, four groups of mice were subjected to UVB irradiation, and three groups of UVB-treated mice were treated with NCP, Vitamin C, and NCP + Vitamin C, respectively. For evaluating the effect of each treatment, the melanin and erythema index was measured during animal experiments. Histological changes were monitored by performing H&E and MTS and IHC against tyrosinase and melanin. As a result, the naturally recovered mice showed a 28-point decrease in the melanin index, whereas a decrease of around 88, 74.3, and 106 points was detected in NCP-, Vitamin C-, and NCP + vitamin C-treated mice, respectively. Likewise, only a 39-point reduction in the erythema index was monitored in naturally recovered mice, but the NCP-, vitamin C-, and NCP + vitamin C-treated mice showed a 87.3-, 77-, and 111-point reduction, respectively. Interestingly, the skin tissues of the mice treated with NCP in combination with Vitamin C mostly recovered from UVB-induced damage. Altogether, this study elucidated the beneficial effect of the treatment of NCP in combination with Vitamin C on the UVB-irradiated skin, which might be helpful for treating sunburn on the skin.

18.
Surg Radiol Anat ; 34(3): 249-55, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21796405

RESUMO

PURPOSE: The aim of this study was to describe in detail the gross anatomy of the nasolacrimal apparatus in relation to the lateral nasal wall by the various steps of cadaver dissection and to measure the distances of surgically important landmarks from relevant structures to improve the safety and efficiency of endoscopic surgical procedures. METHODS: Thirty-six half-heads of embalmed Korean adult cadavers were dissected under a surgical microscope. After removal of the nasal septum, the lateral wall of the nasal cavity was examined. RESULTS: The orifice of the nasolacrimal duct (NLD) was most frequently observed in the form of a vertical sulcus in 14 cases (39%) and the lacrimal fold was present in 28 cases (77.8%). A total of 15 morphometric items between the orifice of the NLD and the adjacent anatomical structures were measured. The location of the orifice of the NLD was observed at a mean of 17.5 ± 3.1 mm from the limen nasi, 22.8 ± 4.8 mm from the anterior nasal spine, and 21.4 ± 3.5 mm from the axilla of the middle nasal concha. In the positional relationships, the most frequent finding was that the lacrimal sac was posterior to the axilla of the middle nasal concha in 23 cases (64%), and overlap of the NLD with the maxillary line was observed in 24 cases (67%). CONCLUSIONS: This study was conducted to accumulate anatomic data on the lacrimal sac and duct with regard to the positional relationships among the surrounding structures to establish the information for use in endoscopic dacryocystorhinostomy.


Assuntos
Ducto Nasolacrimal/anatomia & histologia , Nariz/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Endoscopia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , República da Coreia
19.
Biomedicines ; 10(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36359249

RESUMO

Research in the field of plasma medicine has provided many explanations for various phenomena, as well as the involvement of the chemical elements of plasma; however, it still lacks in biological mechanism analyses [...].

20.
Biomedicines ; 10(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36140360

RESUMO

Oral squamous cell cancer (OSCC) is the most common type of oral cancer (about 80-90% of cases) and various research is being done to cure the disease. This paper aims to verify whether treatment with no-ozone cold plasma (NCP), which is designed for safe usage of the plasma on oral cavities, in combination with gold nanoparticles conjugated with p-FAK antibody (p-FAK/GNP) can trigger the selective and instant killing of SCC-25 cells both in vitro and in vivo. When SCC25 and HaCaT cells are exposed to p-FAK/GNP+NCP, the instant cell death was observed only in SCC25 cells. Such p-FAK/GNP+NCP-mediated cell death was observed only when NCP was directly treated on SCC25 harboring p-FAK/GNP. During NCP treatment, the removal of charged particles from NCP using grounded electric mesh radically decreased the p-FAK/GNP+NCP-mediated cell death. This p-FAK/GNP+NCP-mediated selective cell death of OSCC was also observed in mice xenograft models using SCC25 cells. The mere treatment of p-FAK/GNP and NCP on the xenograft tumor slowly decreased the size of the tumor, and only about 50% of the tumor remained at the end of the experiment. On the other hand, 1 week of p-FAK/GNP+NCP treatment was enough to reduce half of the tumor size, and most of tumor tissue had vanished at the end. An analysis of isolated tissues showed that in the case of individual treatment with p-FAK/GNP or NCP, the cancer cell population was reduced due to apoptotic cell death. However, in the case of p-FAK/GNP+NCP, apoptotic cell death was unobserved, and most tissues were composed of collagen. Thus, this paper suggests the possibility of p-FAK/GNP+NCP as a new method for treating OSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA