Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 13(47)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29078023

RESUMO

All-solution processed, high-performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal-insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC-based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC-based and solution-processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low-cost and high-performance electronic skin or wearable devices.


Assuntos
Metais/química , Nanopartículas/química , Dispositivos Eletrônicos Vestíveis , Impedância Elétrica , Nanopartículas/ultraestrutura , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Nanoscale ; 10(38): 18415-18422, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30256372

RESUMO

In this work, we introduce a low cost, room-temperature and atmospheric pressure based chemical method to produce highly transparent, conductive, and flexible nano-mesh structured electrodes using Ag nanocrystals (NCs). Sequential treatments of ligand exchange and reduction processes were developed to engineer the optoelectronic properties of Ag NC thin films. Combinatorial analysis indicates that the origin of the relatively low conductivity comes from the non-metallic compounds that are introduced during ligand exchange. The reduction process successfully removed these non-metallic compounds, yielding structurally uniform, optically more transparent, dispersive, and electrically more conductive thin films. We optimized the design of Ag NC thin film mesh structures, and achieved low sheet resistance (9.12 Ω â–¡-1), high optical transmittance (94.7%), and the highest figure of merit (FOM) of 6.37 × 10-2. Solution processed flexible transparent heaters, touch pads, and wearable sensors are demonstrated, emphasizing the potential applications of Ag NC transparent electrodes in multifunctional sensors and devices.

3.
ACS Appl Mater Interfaces ; 10(1): 1389-1398, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29239175

RESUMO

With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa-1, reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 104 kPa-1. Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA